skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biexcitons do not form in MoS2 monolayers from optical pumping at 6 K
Transition metal dichalcogenides (TMDs) have attracted much interest in recent years due to their emerging material properties. In monolayer TMDs, such as MoS2, extreme quantum confinement is achieved in the monolayer limit. Although monolayer TMDs represent an ideal platform to explore excitonic physics using ultrafast spectroscopy, this exploration is currently limited by confusion regarding the origin of certain spectral features, including the below-bandgap PIA feature observed in pump-probe experiments. In this work, we document an absence of PIA features immediately after photoexcitation, indicating a lack of strong optically-induced biexciton formation. Below-bandgap PIA features are observed to grow in with a time constant of 110 ± 10 fs, indicative of other factors responsible for their origin. These results indicate that optically-induced biexciton formation is most likely not responsible for the previously observed PIA features in MoS2 monolayers.  more » « less
Award ID(s):
1719875
PAR ID:
10146335
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
SPIE OPTO, 2020, San Francisco, California, United States
Page Range / eLocation ID:
4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present planar aluminum superconductor–graphene junctions whose hybrid interface is engineered for couplings ranging from tunneling to the strongly coupled regime by employing an atomically thin van der Waals tunneling barrier. Without the vdW barrier, we find Al makes strongly coupled contacts with the fully proximities graphene channel underneath. Using a large band gap hexagonal boron nitride (hBN) barrier, we find the junctions always remain in the weak coupling regime, exhibiting tunneling characteristics. Using monolayer semi-conducting transition metal dichalcogenides (TMDs) such as MoS2, we realize intermediate coupling with enhanced junction conductance due to the Andreev process. In this intermediate regime, we find that junction resistance changes in discrete steps when sweeping a perpendicular magnetic field. The period of the resistance steps in the magnetic field is inversely proportional to the junction area, suggesting the physical origin of our observations is due to magnetic-field-induced vortex formation in the planar junction. 
    more » « less
  2. Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Although the strong interaction of ionizing gamma radiation with bulk materials has been demonstrated, understanding its effect on atomically thin materials has scarcely been investigated. Here, we report the effect of gamma irradiation on the structural and electronic properties of a monolayer of MoS2. We perform Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) studies of MoS2, before and after gamma ray irradiation with varying doses and density functional theory (DFT) calculations. The Raman spectra and XPS results demonstrate that point defects dominate after the gamma irradiation of MoS2. DFT calculations elucidate the electronic properties of MoS2 before and after irradiation. Our work makes several contributions to the field of 2D materials research. First, our study of the electronic density of states and the electronic properties of a MoS2 monolayer irradiated by gamma rays sheds light on the properties of a MoS2 monolayer under gamma irradiation. Second, our study confirms that point defects are formed as a result of gamma irradiation. And third, our DFT calculations qualitatively suggest that the conductivity of the MoS2 monolayer may increase after gamma irradiation due to the creation of additional defect states. 
    more » « less
  3. Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are making impressive strides in a short duration compared to other candidates. However, to unlock their full potential for advanced logic transistors, attention must be given to improving the contacts or interfaces they form. One approach is to interface with a suitable low work function metal contact to allow the surface Fermi level (EF) movement toward intended directions, thereby augmenting the overall electrical performance. In this work, we implement physical characterization to understand the tin (Sn) contact interface on monolayer and bulk molybdenum disulfide (MoS2) via in situ x-ray photoelectron spectroscopy and ex situ atomic force microscopy. A Sn contact exhibited a van der Waals type weak interaction with the MoS2 bulk surface where no reaction between Sn and MoS2 is detected. In contrast, reaction products with Sn—S bonding are detected with a monolayer surface consistent with a covalentlike interface. Band alignment at the interface indicates that Sn deposition induces n-type properties in the bulk substrate, while EF of the monolayer remains pinned. In addition, the thermal stability of Sn on the same substrates is investigated in a sequential ultrahigh vacuum annealing treatment at 100, 200, 300, and 400 °C. Sn sublimated/desorbed from both substrates with increasing temperature, which is more prominent on the bulk substrate after annealing at 400 °C. Additionally, Sn significantly reduced the monolayer substrate and produced detectable interface reaction products at higher annealing temperatures. The findings can be strategized to resolve challenges with contact resistance that the device community is having with TMDs. 
    more » « less
  4. Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here. 
    more » « less
  5. Abstract Developing characterization strategies to better understand nanoscale features in two-dimensional nanomaterials is of crucial importance, as the properties of these materials are many times driven by nanoscale and microscale chemical and structural modifications within the material. For the case of large area monolayer MoSe2flakes, kelvin probe force microscopy coupled with tip-enhanced photoluminescence was utilized to evaluate such features including internal grain boundaries, edge effects, bilayer contributions, and effects of oxidation/aging, many of which are invisible to topographical mapping. A reduction in surface potential due ton-type behavior was observed at the edge of the flakes as well as near grain boundaries. Potential phase mapping, which corresponds to the local dielectric constant, depicted local biexciton and trion states in optically-active regions of interest such as grain boundaries. Finally, nanoscale surface potential and photoluminescence mapping was performed at several stages of oxidation, revealing that various oxidative states can be evaluated during the aging process. Importantly, all of the characterization performed in this study was non-destructive and rapid, crucial for quality evaluation of an exciting class of two-dimensional nanomaterials. 
    more » « less