skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interface chemistry, band alignment, and thermal stability study of Sn metal contact on bulk and monolayer MoS2
Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are making impressive strides in a short duration compared to other candidates. However, to unlock their full potential for advanced logic transistors, attention must be given to improving the contacts or interfaces they form. One approach is to interface with a suitable low work function metal contact to allow the surface Fermi level (EF) movement toward intended directions, thereby augmenting the overall electrical performance. In this work, we implement physical characterization to understand the tin (Sn) contact interface on monolayer and bulk molybdenum disulfide (MoS2) via in situ x-ray photoelectron spectroscopy and ex situ atomic force microscopy. A Sn contact exhibited a van der Waals type weak interaction with the MoS2 bulk surface where no reaction between Sn and MoS2 is detected. In contrast, reaction products with Sn—S bonding are detected with a monolayer surface consistent with a covalentlike interface. Band alignment at the interface indicates that Sn deposition induces n-type properties in the bulk substrate, while EF of the monolayer remains pinned. In addition, the thermal stability of Sn on the same substrates is investigated in a sequential ultrahigh vacuum annealing treatment at 100, 200, 300, and 400 °C. Sn sublimated/desorbed from both substrates with increasing temperature, which is more prominent on the bulk substrate after annealing at 400 °C. Additionally, Sn significantly reduced the monolayer substrate and produced detectable interface reaction products at higher annealing temperatures. The findings can be strategized to resolve challenges with contact resistance that the device community is having with TMDs.  more » « less
Award ID(s):
2002741
PAR ID:
10547900
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
42
Issue:
5
ISSN:
2166-2746
Subject(s) / Keyword(s):
2D Contacts Dichalcogenide, MoS2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tungsten transition metal dichalcogenides (W-TMDs) are intriguing due to their properties and potential for application in next-generation electronic devices. However, strong Fermi level (EF) pinning manifests at the metal/W-TMD interfaces, which could tremendously restrain the carrier injection into the channel. In this work, we illustrate the origins of EF pinning for Ni and Ag contacts on W-TMDs by considering interface chemistry, band alignment, impurities, and imperfections of W-TMDs, contact metal adsorption mechanism, and the resultant electronic structure. We conclude that the origins of EF pinning at a covalent contact metal/W-TMD interface, such as Ni/W-TMDs, can be attributed to defects, impurities, and interface reaction products. In contrast, for a van der Waals contact metal/TMD system such as Ag/W-TMDs, the primary factor responsible for EF pinning is the electronic modification of the TMDs resulting from the defects and impurities with the minor impact of metal-induced gap states. The potential strategies for carefully engineering the metal deposition approach are also discussed. This work unveils the origins of EF pinning at metal/TMD interfaces experimentally and theoretically and provides guidance on further enhancing and improving the device performance. 
    more » « less
  2. The high contact resistance of transition metal dichalcogenide (TMD) -based devices is receiving considerable attention due to its limitation on electronic performance. The mechanism of Fermi level (EF) pinning, which causes the high contact resistance, is not thoroughly understood to date. In this study, the metal (Ni and Ag)/Mo-TMDs surfaces and interfaces are characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning tunneling microscopy and spectroscopy, and density functional theory systematically. Ni and Ag form covalent and van der Waals (vdW) interfaces on Mo-TMDs, respectively. Imperfections are detected on Mo-TMDs, which leads to electronic and spatial variations. Gap states appear after the adsorption of single, and two metal atoms on Mo-TMDs. The combination of the interface reaction type (covalent or vdW), the imperfection variability of the TMD materials, and the gap states induced by contact metals with different weights are concluded to be the origins of EF pinning. 
    more » « less
  3. Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here. 
    more » « less
  4. The interface properties and thermal stability of bismuth (Bi) contacts on molybdenum disulfide (MoS2) shed light on their behavior under various deposition conditions and temperatures. The examination involves extensive techniques including X-ray photoelectron spectroscopy, scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). Bi contacts formed a van der Waals interface on MoS2 regardless of deposition conditions, such as ultrahigh vacuum (UHV, 3 × 10–11 mbar) and high vacuum (HV, 4 × 10–6 mbar), while the oxidation on MoS2 has been observed. However, the semimetallic properties of Bi suppress the impact of defect states, including oxidized-MoS2 and vacancies. Notably, the n-type characteristic of Bi/MoS2 remains unaffected, and no significant changes in the local density of states near the conduction band minimum are observed despite the presence of defects detected by STM and STS. As a result, the Fermi level (EF) resides below the conduction band of MoS2. The study also examines the impact of annealing on the contact interface, revealing no interface reaction between Bi and MoS2 up to 300 °C. These findings enhance our understanding of semimetal (Bi) contacts on MoS2, with implications for improving the performance and reliability of electronic devices. 
    more » « less
  5. Two-dimensional (2D) molybdenum disulfide (MoS2) holds immense promise for next-generation electronic applications. However, the role of contact deposition at the metal/semiconductor interface remains a critical factor influencing device performance. This study investigates the impact of different metal deposition techniques, specifically electron-beam evaporation and sputtering, for depositing Cu, Pd, Bi, Sn, Pt, and In. Utilizing Raman spectroscopy with backside illumination, we observe changes at the buried metal/1L MoS2 interface after metal deposition. Sputter deposition causes more damage to monolayer MoS2 than electron-beam evaporation, as indicated by partial or complete disappearance of first-order E′(Γ)α and A′1(Γ)α Raman modes post-deposition. We correlated the degree of damage from sputtered atoms to the cohesive energies of the sputtered material. Through fabrication and testing of field-effect transistors, we demonstrate that electron-beam evaporated Sn/Au contacts exhibit superior performance including reduced contact resistance (~12×), enhanced mobility (~4.3×), and lower subthreshold slope (~0.6×) compared to their sputtered counterparts. Our findings underscore the importance of contact fabrication methods for optimizing the performance of 2D MoS2 devices and the value of Raman spectroscopy with backside illumination for gaining insight into contact performance. 
    more » « less