A Ka-Band Dual-Band Digitally Controlled Oscillator With −195.1-dBc/Hz FoM${_T}$ Based on a Compact High-$Q$ Dual-Path Phase-Switched Inductor
- Award ID(s):
- 1705026
- PAR ID:
- 10146895
- Date Published:
- Journal Name:
- IEEE Transactions on Microwave Theory and Techniques
- Volume:
- 67
- Issue:
- 7
- ISSN:
- 0018-9480
- Page Range / eLocation ID:
- 2748 to 2758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This research proposes an inkjet printed dual-band dual-sense circularly polarized antenna using CPW-feeding on PET substrate. The antenna is designed and optimized using ANSYS HFSS, which operates at 4.01 GHz - 5.05 GHz (22.96%) and 6.23 GHz - 7.58 GHz (19.55%) with a return loss of <−10 dB. On top of that, the antenna shows an axial ratio of less than 3 dB at 4.23 GHz - 4.62 GHz (8.81%) and 7.11 GHz - 7.36 GHz (3.45%), whereas left hand circular polarization (LHCP) is observed in the first band and right hand circular polarization (RHCP) is observed in the second band. The overall dimensions of the antenna is x x , where is the free-space wavelength at the lowest circular polarization frequency. Measurement of the fabricated version shows good agreement with the simulated version. To the best of author’s knowledge, this proposed design is the first circularly polarized …more » « less
-
As vehicular communication networks embrace metaverse beyond 5G/6G systems, the rich content update via the least interfered subchannel of the optimal frequency band in a hybrid band vehicle to everything (V2X) setting emerges as a challenging optimization problem. We model this problem as a tradeoff between multi-band VR/AR devices attempting to perform metaverse scenes and environmental updates to metaverse roadside units (MRSUs) while minimizing energy consumption. Due to the computational hardness of this optimization, we formulate an opportunistic band selection problem using a multi-armed bandit (MAB) that provides a good quality solution in real-time without computationally burdening the already stretched augmented/virtual reality (AR/VR) units acting as transmitting nodes. The opportunistic use of scheduling rich content updates at traffic signals and stand-still scenarios maps well with the formulated bandit problem. We propose a Dual-Objective Minimax Optimal Stochastic Strategy (DOMOSS) as a natural solution to this problem. Through extensive computer-based simulations, we demonstrate the effectiveness of our proposal in contrast to baselines and comparable solutions. We also verify the quality of our solution and the convergence of the proposed strategy.more » « less