Second harmonic generation is the lowest-order wave-wave nonlinear interaction occurring in, e.g., optical, radio, and magnetohydrodynamic systems. As a prototype behavior of waves, second harmonic generation is used broadly, e.g., for doubling Laser frequency. Second harmonic generation of Rossby waves has long been believed to be a mechanism of high-frequency Rossby wave generation via cascade from low-frequency waves. Here, we report the observation of a Rossby wave second harmonic generation event in the atmosphere. We diagnose signatures of two transient waves at periods of 16 and 8 days in the terrestrial middle atmosphere, using meteor-radar wind observations over the European and Asian sectors during winter 2018–2019. Their temporal evolution, frequency and wavenumber relations, and phase couplings revealed by bicoherence and biphase analyses demonstrate that the 16-day signature is an atmospheric manifestation of a Rossby wave normal mode, and its second harmonic generation gives rise to the 8-day signature. Our finding confirms the theoretically-anticipated Rossby wave nonlinearity.
- Award ID(s):
- 1719875
- Publication Date:
- NSF-PAR ID:
- 10148292
- Journal Name:
- Cleo
- ISSN:
- 1993-5730
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The measurement and stabilization of the carrier–envelope offset frequency
via self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation ofmore » -
Abstract The phase matching between the propagating fundamental and nonlinearly generated waves plays an important role in the efficiency of the nonlinear frequency conversion in macroscopic crystals. However, in nanoscale samples, such as nanoplasmonic structures, the phase-matching condition is often ignored due to the sub-wavelength nature of the materials. Here, we first show that the phase matching of the lattice plasmon modes at the fundamental and second-harmonic frequencies in a plasmonic nanoantenna array can effectively enhance the surface-enhanced second-harmonic generation. Additionally, a significant enhancement of the second-harmonic generation is demonstrated using stationary band-edge lattice plasmon modes with zero phase.
-
Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shapemore »
-
null (Ed.)Purpose To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested. Methods Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and themore »