skip to main content


Title: Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces
Abstract

Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s−1) realized by not only optical pushing but also pulling forces from a single Gaussian laser beam. Both the optical pulling and high speeds are made possible by a unique NP-laser interaction. The Au NP excited by the laser at the surface plasmon resonance peak can generate a nanoscale bubble, which can encapsulate the NP (i.e., supercavitation) to create a virtually frictionless environment for it to move, like the Leidenfrost effect. Certain NP-in-bubble configurations can lead to the optical pulling of NP against the photon stream. The demonstrated ultra-fast, light-driven NP movement may benefit a wide range of nano- and bio-applications and provide new insights to the field of optical pulling force.

 
more » « less
Award ID(s):
1706039 1937923
NSF-PAR ID:
10151514
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical pulling force (OPF) can make a nanoparticle (NP) move against the propagation direction of the incident light. Long-distance optical pulling is highly desired for nano-object manipulation, but its realization remains challenging. We propose an NP-in-cavity structure that can be pulled by a single plane wave to travel long distances when the spherical cavity wrapping the NP has a refractive index lower than the medium. An electromagnetic multipole analysis shows that NPs made of many common materials can receive the OPF inside a lower index cavity. Using a silica-Au core-shell NP that is encapsulated by a plasmonic nanobubble, we experimentally demonstrate that a single laser can pull the Au NP-in-nanobubble structure for ~0.1 mm. These results may lead to practical applications that can use the optical pulling of NP, such as optically driven nanostructure assembly and nanoswimmers. 
    more » « less
  2. Abstract

    Tailored nanostructures provide at-will control over the properties of light, with applications in imaging and spectroscopy. Active photonics can further open new avenues in remote monitoring, virtual or augmented reality and time-resolved sensing. Nanomaterials withχ(2)nonlinearities achieve highest switching speeds. Current demonstrations typically require a trade-off: they either rely on traditionalχ(2)materials, which have low non-linearities, or on application-specific quantum well heterostructures that exhibit a highχ(2)in a narrow band. Here, we show that a thin film of organic electro-optic molecules JRD1 in polymethylmethacrylate combines desired merits for active free-space optics: broadband record-high nonlinearity (10-100 times higher than traditional materials at wavelengths 1100-1600 nm), a custom-tailored nonlinear tensor at the nanoscale, and engineered optical and electronic responses. We demonstrate a tuning of optical resonances by Δλ = 11 nm at DC voltages and a modulation of the transmitted intensity up to 40%, at speeds up to 50 MHz. We realize 2 × 2 single- and 1 × 5 multi-color spatial light modulators. We demonstrate their potential for imaging and remote sensing. The compatibility with compact laser diodes, the achieved millimeter size and the low power consumption are further key features for laser ranging or reconfigurable optics.

     
    more » « less
  3. Abstract

    2D mesoporous materials fabricated via the assembly of nanoparticles (NPs) not only possess the unique properties of nanoscale building blocks but also manifest additional collective properties due to the interactions between NPs. In this work, reported is a facile and designable way to prepare free‐standing 2D mesoporous gold (Au) superstructures with a honeycomb‐like configuration. During the fabrication process, Au NPs with an average diameter of 5.0 nm are assembled into a superlattice film on a diethylene glycol substrate. Then, a subsequent thermal treatment at 180 °C induces NP attachment, forming the honeycomb‐like ordered mesoporous Au superstructures. Each individual NP connects with three neighboring NPs in the adjacent layer to form a tetrahedron‐based framework. Mesopores confined in the superstructure have a uniform size of 3.5 nm and are arranged in an ordered hexagonal array. The metallic bonding between Au NPs increases the structural stability of architected superstructures, allowing them to be easily transferred to various substrates. In addition, electron energy‐loss spectroscopy experiments and 3D finite‐difference time‐domain simulations reveal that electric field enhancement occurs at the confined mesopores when the superstructures are excited by light, showing their potential in nano‐plasmonic applications.

     
    more » « less
  4. Abstract

    The realization of optically active structures with direct‐write printing has been challenging, particularly in spatially constrained microfluidic devices which are essential for point‐of‐care (POC) applications. The existing techniques are limited by resolution, accessibility, and multistep fabrication constraints. “Point‐and‐shoot” strategies to achieve site‐specific fabrication of optically active Ag rings and on‐demand targeted surface‐enhanced optical spectroscopy are reported. Stable microbubbles over an Au nanoisland (AuNI) substrate are generated using a continuous‐wave laser at low power (≈0.5 mW µm−2). Analytical modeling of bubble generation process substantiates the evolution of ring morphology and its power dependence. The tunable Ag rings exhibit surface plasmon resonances in the mid‐IR regime from 3.8 to 4.6 µm, while the AuNI shows visible region response. The Ag ring over the AuNI imparts intensified surface‐enhanced Raman spectroscopy (SERS) activity owing to amplified hot spots at Ag ring/AuNI interface. As an example, SERS and surface‐enhanced infrared spectroscopy of rhodamine 6G, crystal violet, and 2,4,6‐trinitrotoluene molecules, respectively, are demonstrated. The applicability of this technique to perform in situ fabrication and SERS sensing in microfluidic channels is shown. Using a simple in situ approach toward optically active structures, our technique can synergize multiple surface‐enhanced optical spectroscopies to facilitate POC applications.

     
    more » « less
  5. Abstract

    Functionalized nanoparticles (NPs) are the foundation of diverse applications. Especially, in many biosensing applications, concentrating suspended NPs onto a surface without deteriorating their biofunction is usually an inevitable step to improve detection limit, which remains to be a great challenge. In this work, biocompatible deposition of functionalized NPs to optically transparent surfaces is demonstrated using shrinking bubbles. Leveraging the shrinking phase of bubble mitigates the biomolecule degradation problems encountered in traditional photothermal deposition techniques. The deposited NPs are closely packed, and the functional molecules are able to survive the process as verified by their strong fluorescence signals. Using high‐speed videography, it is revealed that the contracting contact line of the shrinking bubble forces the NPs captured by the contact line to a highly concentrated island. Such shrinking surface bubble deposition (SSBD) is low temperature in nature as no heat is added during the process. Using a hairpin DNA‐functionalized gold NP suspension as a model system, SSBD is shown to enable much stronger fluorescence signal compared to the optical‐pressure deposition and the conventional thermal bubble contact line deposition. The demonstrated SSBD technique capable of directly depositing functionalized NPs may significantly simplify biosensor fabrication and thus benefit a wide range of relevant applications.

     
    more » « less