skip to main content


Title: Lipid normalization and stable isotope discrimination in Pacific walrus tissues
Abstract

Analysis of stable carbon and nitrogen isotope values (δ13C and δ15N) of animal tissues can provide important information about diet, physiology, and movements. Interpretation of δ13C and δ15N values, however, is influenced by factors such as sample lipid content, tissue-specific isotope discrimination, and tissue turnover rates, which are typically species- and tissue-specific. In this study, we generated lipid normalization models for δ13C and investigated the effects of chemical lipid extractions on δ13C and δ15N in Pacific walrus (Odobenus rosmarus divergens) muscle, liver, and skin. We also evaluated tissue-specific isotope discrimination in walrus muscle, liver, skin, and bone collagen. Mean δ13Clipid-freeof skin and bone collagen were similar, as were mean δ15N of muscle and liver. All other tissues differed significantly for both isotopes. Differences in δ13Clipid-freeand δ15N among tissues agreed with published estimates of marine mammal tissue-specific isotope discrimination factors, with the exception of skin. The results of this work will allow researchers to gain a clearer understanding of walrus diet and the structure of Arctic food webs, while also making it possible to directly compare the results of contemporary walrus isotope research with those of historic and paleoecological studies.

 
more » « less
NSF-PAR ID:
10153290
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less
  2. Abstract

    Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.

    We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.

    We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.

    We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.

     
    more » « less
  3. Rationale

    Ecologists increasingly determine the δ15N values of amino acids (AA) in animal tissue; “source” AA typically exhibit minor variation between diet and consumer, while “trophic” AA have increased δ15N values in consumers. Thus, trophic‐source δ15N offsets (i.e., Δ15NT‐S) reflect trophic position in a food web. However, even minor variations in δ15Nsource AAvalues may influence the magnitude of offset that represents a trophic step, known as the trophic discrimination factor (i.e., TDFT‐S). Diet digestibility and protein content can influence the δ15N values of bulk animal tissue, but the effects of these factors on AA Δ15NT‐Sand TDFT‐Sin mammals are unknown.

    Methods

    We fed captive mice (Mus musculus) either (A) a low‐fat, high‐fiber diet with low, intermediate, or high protein; or (B) a high‐fat, low‐fiber diet with low or intermediate protein. Mouse muscle and dietary protein were analyzed for bulk tissue δ15N using elemental analyzer‐isotope ratio mass spectrometry (EA‐IRMS), and were also hydrolyzed into free AA that were analyzed for δ15N using gas chromatography‐combustion‐IRMS.

    Results

    As dietary protein increased, Δ15NConsumer‐Dietslightly declined for bulk muscle tissue in both experiments; increased for AA in the low‐fat, high‐fiber diet (A); and remained the same or decreased for AA in the high‐fat, low‐fiber diet (B). The effects of dietary protein on Δ15NT‐Sand on TDFT‐Svaried by AA but were consistent between variables.

    Conclusions

    Diets were less digestible and included more protein in Experiment A than in Experiment B. As a result, the mice in Experiment A probably oxidized more AA, resulting in greater Δ15NConsumer‐Dietvalues. However, the similar responses of Δ15NT‐Sand of TDFT‐Sto diet variation suggest that if diet samples are available, Δ15NT‐Saccurately tracks trophic position. If diet samples are not available, the patterns presented here provide a basis to interpret Δ15NT‐Svalues. The trophic‐source offset of Pro‐Lys did not vary across diets, and therefore may be more reliable for omnivores than other offsets (e.g., Glu‐Phe).

     
    more » « less
  4. Abstract Objectives

    We compared δ15N and δ13C values from bone and dentine collagen profiles of individuals interred in famine‐related and attritional burials to evaluate whether individuals in medieval London who experienced nutritional stress exhibit enriched nitrogen in bone and tooth tissue. Dentine profiles were evaluated to identify patterns that may be indicative of famine during childhood and were compared with the age of enamel hypoplasia (EH) formation to assess whether isotopic patterns of undernutrition coincide with the timing of physiological stress.

    Materials and Methods

    δ15N and δ13C isotope ratios of bone collagen were obtained from individuals (n= 128) interred in attritional and famine burials from a medieval London cemetery (c. 1120–1539). Temporal sequences of δ15N and δ13C isotope profiles for incrementally forming dentine collagen were obtained from a subset of these individuals (n= 21).

    Results

    Results indicate that individuals from attritional graves exhibit significantly higher δ15N values but no significant differences were found between burial types for the sexes. Analyses of dentine profiles reveal that a lower proportion of famine burials exhibit stable dentine profiles and that several exhibit a pattern of opposing covariance between δ15N and δ13C. EH were also observed to have formed during or after the opposing covariance pattern for some individuals.

    Conclusions

    The results of this study may reflect differences in diet between burial types rather than nutritional stress. Though nutritional stress could not be definitively identified using bone and dentine collagen, the results from dentine analysis support previous observations of biochemical patterns associated with nutritional stress during childhood.

     
    more » « less
  5. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less