Two-dimensional (2D) transition metal dichalcogenide (2D TMD) layers present an unusually ideal combination of excellent opto-electrical properties and mechanical tolerance projecting high promise for a wide range of emerging applications, particularly in flexible and stretchable devices. The prerequisite for realizing such opportunities is to reliably integrate large-area 2D TMDs of well-defined dimensions on mechanically pliable materials with targeted functionalities by transferring them from rigid growth substrates. Conventional approaches to overcome this challenge have been limited as they often suffer from the non-scalable integration of 2D TMDs whose structural and chemical integrity are altered through toxic chemicals-involved processes. Herein, we report a generic and reliable strategy to achieve the layer-by-layer integration of large-area 2D TMDs and their heterostructure variations onto a variety of unconventional substrates. This new 2D layer integration method employs water only without involving any other chemicals, thus renders distinguishable advantages over conventional approaches in terms of material property preservation and integration size scalability. We have demonstrated the generality of this method by integrating a variety of 2D TMDs and their heterogeneously-assembled vertical layers on exotic substrates such as plastics and papers. Moreover, we have verified its technological versatility by demonstrating centimeter-scale 2D TMDs-based flexible photodetectors and pressure sensors which are difficult to fabricate with conventional approaches. Fundamental principles for the water-assisted spontaneous separation of 2D TMD layers are also discussed.
more » « less- Award ID(s):
- 1728309
- PAR ID:
- 10153352
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Two-dimensional (2D) transition metal dichalcogenide (TMD) layers have gained increasing attention for a variety of emerging electrical, thermal, and optical applications. Recently developed metallic 2D TMD layers have been projected to exhibit unique attributes unattainable in their semiconducting counterparts; e.g. , much higher electrical and thermal conductivities coupled with mechanical flexibility. In this work, we explored 2D platinum ditelluride (2D PtTe 2 ) layers – a relatively new class of metallic 2D TMDs – by studying their previously unexplored electro-thermal properties for unconventional window applications. We prepared wafer-scale 2D PtTe 2 layer-coated optically transparent and mechanically flexible willow glasses via a thermally-assisted tellurization of Pt films at a low temperature of 400 °C. The 2D PtTe 2 layer-coated windows exhibited a thickness-dependent optical transparency and electrical conductivity of >10 6 S m −1 – higher than most of the previously explored 2D TMDs. Upon the application of electrical bias, these windows displayed a significant increase in temperature driven by Joule heating as confirmed by the infrared (IR) imaging characterization. Such superior electro-thermal conversion efficiencies inherent to 2D PtTe 2 layers were utilized to demonstrate various applications, including thermochromic displays and electrically-driven defogging windows accompanying mechanical flexibility. Comparisons of these performances confirm the superiority of the wafer-scale 2D PtTe 2 layers over other nanomaterials explored for such applications.more » « less
-
null (Ed.)Two-dimensional (2D) molybdenum disulfide (MoS 2 ) layers are suitable for visible-to-near infrared photodetection owing to their tunable optical bandgaps. Also, their superior mechanical deformability enabled by an extremely small thickness and van der Waals (vdW) assembly allows them to be structured into unconventional physical forms, unattainable with any other materials. Herein, we demonstrate a new type of 2D MoS 2 layer-based rollable photodetector that can be mechanically reconfigured while maintaining excellent geometry-invariant photo-responsiveness. Large-area (>a few cm 2 ) 2D MoS 2 layers grown by chemical vapor deposition (CVD) were integrated on transparent and flexible substrates composed of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNs) by a direct solution casting method. These composite materials in three-dimensionally rollable forms exhibited a large set of intriguing photo-responsiveness, well preserving intrinsic opto-electrical characteristics of the integrated 2D MoS 2 layers; i.e. , light intensity-dependent photocurrents insensitive to illumination angles as well as highly tunable photocurrents varying with the rolling number of 2D MoS 2 layers, which were impossible to achieve with conventional photodetectors. This study provides a new design principle for converting 2D materials to three-dimensional (3D) objects of tailored functionalities and structures, significantly broadening their potential and versatility in futuristic devices.more » « less
-
Abstract Near-perfect light absorbers (NPLAs), with absorbance,
, of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of$${{{{{{{\mathcal{A}}}}}}}}$$ =95% at$${{{{{{{\mathcal{A}}}}}}}}$$ λ =2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics. -
Abstract Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO
x capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g−1for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g−1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics. -
Abstract An overview of recent developments in controlled vapor‐phase growth of 2D transition metal dichalcogenide (2D TMD) films is presented. Investigations of thin‐film formation mechanisms and strategies for realizing 2D TMD films with less‐defective large domains are of central importance because single‐crystal‐like 2D TMDs exhibit the most beneficial electronic and optoelectronic properties. The focus is on the role of the various growth parameters, including strategies for efficiently delivering the precursors, the selection and preparation of the substrate surface as a growth assistant, and the introduction of growth promoters (e.g., organic molecules and alkali metal halides) to facilitate the layered growth of (Mo, W)(S, Se, Te)2atomic crystals on inert substrates. Critical factors governing the thermodynamic and kinetic factors related to chemical reaction pathways and the growth mechanism are reviewed. With modification of classical nucleation theory, strategies for designing and growing various vertical/lateral TMD‐based heterostructures are discussed. Then, several pioneering techniques for facile observation of structural defects in TMDs, which substantially degrade the properties of macroscale TMDs, are introduced. Technical challenges to be overcome and future research directions in the vapor‐phase growth of 2D TMDs for heterojunction devices are discussed in light of recent advances in the field.