skip to main content

Title: Multiple intertwined pairing states and temperature-sensitive gap anisotropy for superconductivity at a nematic quantum-critical point
Abstract

The proximity of many strongly correlated superconductors to density-wave or nematic order has led to an extensive search for fingerprints of pairing mediated by dynamical quantum-critical (QC) fluctuations of the corresponding order parameter. Here we study anisotropics-wave superconductivity induced by anisotropic QC dynamical nematic fluctuations. We solve the non-linear gap equation for the pairing gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)and show that its angular dependence strongly varies below$${T}_{{\rm{c}}}$$Tc. We show that this variation is a signature of QC pairing and comes about because there are multiples-wave pairing instabilities with closely spaced transition temperatures$${T}_{{\rm{c}},n}$$Tc,n. Taken alone, each instability would produce a gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)that changes sign$$8n$$8ntimes along the Fermi surface. We show that the equilibrium gap$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm)is a superposition of multiple components that are nonlinearly induced below the actual$${T}_{{\rm{c}}}={T}_{{\rm{c}},0}$$Tc=Tc,0, and get resonantly enhanced at$$T={T}_{{\rm{c}},n}\ <\ {T}_{{\rm{c}}}$$T=Tc,n<Tc. This gives rise to strong temperature variation of the angular dependence of$$\Delta (\theta ,{\omega }_{m})$$Δ(θ,ωm). This variation progressively disappears away from a QC point.

Authors:
; ;
Publication Date:
NSF-PAR ID:
10154251
Journal Name:
npj Quantum Materials
Volume:
4
Issue:
1
ISSN:
2397-4648
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The free multiplicative Brownian motion$$b_{t}$$btis the large-Nlimit of the Brownian motion on$$\mathsf {GL}(N;\mathbb {C}),$$GL(N;C),in the sense of$$*$$-distributions. The natural candidate for the large-Nlimit of the empirical distribution of eigenvalues is thus the Brown measure of$$b_{t}$$bt. In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$\Sigma _{t}$$Σtthat appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$W_{t}$$Wton$$\overline{\Sigma }_{t},$$Σ¯t,which is strictly positive and real analytic on$$\Sigma _{t}$$Σt. This density has a simple form in polar coordinates:$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$Wt(r,θ)=1r2wt(θ),where$$w_{t}$$wtis an analytic function determined by the geometry of the region$$\Sigma _{t}$$Σt. We show also that the spectral measure of free unitary Brownian motion$$u_{t}$$utis a “shadow” of the Brown measure of$$b_{t}$$bt, precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.

  2. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the levelmore »of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

    « less
  3. Abstract

    We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such an interaction can arise from the combination of electron–electron repulsion at high energies and the weaker electron–phonon attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the energy dependence of the interaction, but the gap Δ(ω) must change sign at some (imaginary) frequencyω0to counteract the repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the normal state occurs. We show that, as the phase transition is approached, Δ andω0must vanish in a correlated way such that$$1/| \log [{{\Delta }}(0)]| \sim {\omega }_{0}^{2}$$1/log[Δ(0)]~ω02. We discuss the behavior of phase fluctuations near this transition and show that the correlation between Δ(0) andω0locks the phase stiffness to a non-zero value.

  4. Abstract

    Sequence mappability is an important task in genome resequencing. In the (km)-mappability problem, for a given sequenceTof lengthn, the goal is to compute a table whoseith entry is the number of indices$$j \ne i$$jisuch that the length-msubstrings ofTstarting at positionsiandjhave at mostkmismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of$$k=1$$k=1. We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for$$k=O(1)$$k=O(1), works in$$O(n)$$O(n)space and, with high probability, in$$O(n \cdot \min \{m^k,\log ^k n\})$$O(n·min{mk,logkn})time. Our algorithm requires a careful adaptation of thek-errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop$$O(n^2)$$O(n2)-time algorithms to computeall(km)-mappability tables for a fixedmand all$$k\in \{0,\ldots ,m\}$$k{0,,m}or a fixedkand all$$m\in \{k,\ldots ,n\}$$m{k,,n}. Finally, we show that, for$$k,m = \Theta (\log n)$$k,m=Θ(logn), the (km)-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.

  5. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.