skip to main content

Title: Warming and drying over the central Himalaya caused by an amplification of local mountain circulation

Climatic changes over the central Himalaya are critical for water resources in downstream regions where hundreds of millions of people live. Warming and drying in this region have both occurred in recent decades, but the associated meteorological factors are difficult to diagnose based on observations from unevenly distributed weather stations, reanalyses, and global climate models that poorly reproduce the orographic diurnal cycle. Here, recent trends in the summer diurnal cycle over the central Himalaya are investigated using a 36-year high-resolution dynamical downscaling. We illustrate contrasting trends over the diurnal cycle of circulation and convection over the Himalaya. In the daytime, warming of the slopes has enhanced anabatic upslope winds. At night, clearer skies have radiatively cooled the slopes, enhancing katabatic downslope winds. The enhanced upslope winds have prevented any drying over the mountains in the daytime, while the enhanced downslope winds are associated with significant nocturnal drying at high elevations. This amplification in the diurnal cycle is critical for projecting the future hydroclimate over the region’s complex terrain.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The unprecedented size of the 2017 wildfires that burned nearly 600,000 hectares of central Chile highlight a need to better understand the climatic conditions under which large fires develop. Here we evaluate synoptic atmospheric conditions at the surface and free troposphere associated with anomalously high (active) versus low (inactive) months of area burned in south-central Chile (ca. 32–41° S) from the Chilean Forest Service (CONAF) record of area burned from 1984–2018. Active fire months are correlated with warm surface temperatures, dry conditions, and the presence of a circumpolar assemblage of high-pressure systems located ca. 40°–60° S. Additionally, warm surface temperatures associated with active fire months are linked to reduced strength of cool, onshore westerly winds and an increase in warm, downslope Andean Cordillera easterly winds. Episodic warm downslope winds and easterly wind anomalies superimposed on long-term warming and drying trends will continue to create conditions that promote large fires in south-central Chile. Identifying the mechanisms responsible for easterly wind anomalies and determining whether this trend is strengthening due to synoptic-scale climatic changes such as the poleward shift in Southern Hemisphere westerly winds will be critical for anticipating future large fire activity in south-central Chile. 
    more » « less
  2. Abstract

    The impact of upstream terrain on the diurnal variability of downslope windstorms on the south‐facing slopes of the Santa Ynez Mountains (SYM) is investigated using numerical simulations. These windstorms, called Sundowners due to their typical onset around sunset, have intensified all major wildfires in the area. This study investigates the role of the orography upstream of the SYM in the diurnal behavior of Sundowners. Two types of Sundowners are examined: western sundowners (winds with dominant northwesterly direction) and eastern Sundowners (winds with dominant northeasterly direction). By using semi‐idealized simulations, in which we progressively reduce the upstream terrain, we show that the onset of the lee slope jet occurs in the late afternoon only when the flow approaches the SYM from the northeast, after interacting with a considerably higher mountain barrier. We demonstrate that during the eastern regime, the progressive reduction of the upstream terrain results in strong lee slope winds throughout the day. Conversely, the diurnal cycle of downslope winds during the western regime is less sensitive to the reduction of the upstream terrain. The Sundowner diurnal cycle during the eastern regime can be explained by boundary‐layer processes in the valley and the blocking effect of high mountains upstream of the SYM. These results contribute to a better understanding of the influence of upstream orography in the cycle and intensity of downslope windstorms in coastal mountains.

    more » « less
  3. Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation. 
    more » « less
  4. Surface winds over California can compound fire risk during autumn, yet their long-term trends in the face of decadal warming are less clear compared to other climate variables like temperature, drought, and snowmelt. To determine where and how surface winds are changing most, this article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn 10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope windstorms are frequent to this region, trends instead appear to result from elevated gradients in warming between California and the interior continent. The result is a sharper horizontal temperature gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is likely influenced by year-to-year changes in the number of observations.

    more » « less
  5. Abstract

    Dynamical physical processes associated with an onshore moving marine atmospheric boundary layer (MABL, i.e., sea breeze) over sloping terrain, sensitivity of these processes to MABL characteristics, and flow modifications induced by an offshore‐moving squall line are investigated using idealized simulations. The moving MABL gradually advances inland, exhibiting farther advancement and greater upslope wind speed for deeper and cooler MABLs. The local acceleration is primarily driven by a MABL‐generated perturbation pressure gradient force (PPGF). As the moving MABL air accumulates onshore over time, an opposing force associated with the increasing negative buoyancy eventually balances the PPGF and results in a quasi‐steady upslope flow. The approaching squall line disrupts this flow in two distinct ways; Initially the storm's cold pool enhances the ambient downslope winds which diminishes the upslope wind speeds, and subsequently the storm‐generated high‐frequency waves and the associated surface pressure low enhances the upslope‐directed PPGF which reintensifies the upslope flows.

    more » « less