skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Approach to Model Constant Curvature Continuum Robot Dynamics
Abstract Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model.  more » « less
Award ID(s):
1906727
PAR ID:
10155506
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2019 Dynamic Systems and Control Conference
Volume:
3
Page Range / eLocation ID:
V003T20A001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Underactuation is a core challenge associated with controlling soft and continuum robots, which possess theoretically infinite degrees of freedom, but few actuators. However, m actuators may still be used to control a dynamic soft robot in an m-dimensional output task space. In this paper we develop a task-space control approach for planar continuum robots that is robust to modeling error and requires very little sensor information. The controller is based on a highly underactuated discrete rod mechanics model in maximal coordinates and does not require conversion to a classical robot dynamics model form. This promotes straightforward control design, implementation and efficiency. We perform input-output feedback linearization on this model, apply sliding mode control to increase robustness, and formulate an observer to estimate the full state from sparse output measurements. Simulation results show exact task-space reference tracking behavior can be achieved even in the presence of significant modeling error, inaccurate initial conditions, and output-only sensing. 
    more » « less
  2. The passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty. The models that form the basis of these problems should be reasonably accurate yet not prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a common language. Classical theories of mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in models of continuum robots, both in terms of number and of quality, for geometrically nonlinear models built from the general family of one-dimensional rod models of continuum mechanics. Consideration is also given to the variety of actuators found in existing designs, the types of interaction that occur between continuum robots and their biomedical environments, the imposition of constraints on degrees of freedom, and to the numerical solution of the family of models under study. Finally, some open problems of modeling are discussed and future challenges are identified. 
    more » « less
  3. Multisection continuum arms offer complementary characteristics to those of traditional rigid-bodied robots. Inspired by biological appendages, such as elephant trunks and octopus arms, these robots trade rigidity for compliance and accuracy for safety and, therefore, exhibit strong potential for applications in human-occupied spaces. Prior work has demonstrated their superiority in operation in congested spaces and manipulation of irregularly shaped objects. However, they are yet to be widely applied outside laboratory spaces. One key reason is that, due to compliance, they are difficult to control. Sophisticated and numerically efficient dynamic models are a necessity to implement dynamic control. In this paper, we propose a novel numerically stable center-of-gravity-based dynamic model for variable-length multisection continuum arms. The model can accommodate continuum robots having any number of sections with varying physical dimensions. The dynamic algorithm is of O(n2) complexity, runs at 9.5 kHz, simulates six to eight times faster than real time for a three-section continuum robot, and, therefore, is ideally suited for real-time control implementations. The model accuracy is validated numerically against an integral-dynamic model proposed by the authors and experimentally for a three-section pneumatically actuated variable-length multisection continuum arm. This is the first sub-real-time dynamic model based on a smooth continuous deformation model for variable-length multisection continuum arms. 
    more » « less
  4. Controlling soft continuum robotic arms is challenging due to their hyper-redundancy and dexterity. In this paper we experimentally demonstrate, for the first time, closed-loop control of the configuration space variables of a soft robotic arm, composed of independently controllable segments, using a Cosserat rod model of the robot and the distributed sensing and actuation capabilities of the segments. Our controller solves the inverse dynamic problem by simulating the Cosserat rod model in MATLAB using a computationally efficient numerical solution scheme, and it applies the computed control output to the actual robot in real time. The position and orientation of the tip of each segment are measured in real time, while the remaining unknown variables that are needed to solve the inverse dynamics are estimated simultaneously in the simulation. We implement the controller on a multi-segment silicone robotic arm with pneumatic actuation, using a motion capture system to measure the segments' positions and orientations. The controller is used to reshape the arm into configurations that are achieved through combinations of bending and extension deformations in 3D space. Although the possible deformations are limited for this robot platform, our study demonstrates the potential for implementing the control approach on a wide range of continuum robots in practice. The resulting tracking performance indicates the effectiveness of the controller and the accuracy of the simulated Cosserat rod model. 
    more » « less
  5. In nature, animals with soft body parts demonstrate remarkable control over their shape, such as an elephant trunk wrapping around a tree branch to pick it up. However, most research on robotic manipulators focuses on controlling the end effector, partly because the manipulator’s arm is rigidly articulated. With recent advances in soft robotics research, controlling a soft manipulator into many different shapes will significantly improve the robot’s functionality, such as medical robots morphing their shape to navigate the digestive system and deliver drugs to specific locations. However, controlling the shape of soft robots is challenging due to their highly nonlinear dynamics that are computationally intensive. In this paper, we leverage a physics-informed, data-driven approach using the Koopman operator to realize the shape control of soft robots. We simulate the dynamics of a soft manipulator using a physics-based simulator (PyElastica) to generate the input-output data, which is then used to identify an approximated linear model based on the Koopman operator. We then formulate the shapecontrol problem as a convex optimization problem that is computationally efficient. Our linear model is over 12 times faster than the physics-based model in simulating the manipulator’s motion. Further, we can control a soft manipulator into different shapes using model predictive control. We envision that the proposed method can be effectively used to control the shapes of soft robots to interact with uncertain environments or enable shape-morphing robots to fulfill diverse tasks. 
    more » « less