skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alphabet Projection of Spectra
In the metabolomics, glycomics, and mass spectrometry of structured small molecules, the combinatoric nature of the problem renders a database impossibly large, and thus de novo analysis is necessary. De novo analysis requires an alphabet of mass difference values used to link peaks in fragmentation spectra when they are different by a mass in the alphabet divided by a charge. Often, this alphabet is not known, prohibiting de novo analysis. A method is proposed that, given fragmentation mass spectra, identifies an alphabet of m/z differences that can build large connected graphs from many intense peaks in each spectrum from a collection. We then introduce a novel approach to efficiently find recurring substructures in the de novo graph results.  more » « less
Award ID(s):
1845465
PAR ID:
10155907
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of proteome research
Volume:
18
Issue:
9
ISSN:
1535-3907
Page Range / eLocation ID:
3268–3281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract De novo peptide sequencing, which does not rely on a comprehensive target sequence database, provides us with a way to identify novel peptides from tandem mass spectra. However, current de novo sequencing algorithms suffer from low accuracy and coverage, which hinders their application in proteomics. In this paper, we presentPepNet, a fully convolutional neural network for high accuracy de novo peptide sequencing. PepNet takes an MS/MS spectrum (represented as a high-dimensional vector) as input, and outputs the optimal peptide sequence along with its confidence score. The PepNet model is trained using a total of 3 million high-energy collisional dissociation MS/MS spectra from multiple human peptide spectral libraries. Evaluation results show that PepNet significantly outperforms current best-performing de novo sequencing algorithms (e.g. PointNovo and DeepNovo) in both peptide-level accuracy and positional-level accuracy. PepNet can sequence a large fraction of spectra that were not identified by database search engines, and thus could be used as a complementary tool to database search engines for peptide identification in proteomics. In addition, PepNet runs around 3x and 7x faster than PointNovo and DeepNovo on GPUs, respectively, thus being more suitable for the analysis of large-scale proteomics data. 
    more » « less
  2. ABSTRACT Protein tandem mass spectrometry data are most often interpreted by matching observed mass spectra to a protein database derived from the reference genome of the sample being analyzed. In many application domains, however, a relevant protein database is unavailable or incomplete, and in such settings de novo sequencing is required. Since the introduction of the DeepNovo algorithm in 2017, the field of de novo sequencing has been dominated by deep learning methods, which use large amounts of labeled mass spectrometry data to train multi‐layer neural networks to translate from observed mass spectra to corresponding peptide sequences. Here, we describe these deep learning methods, outline procedures for evaluating their performance, and discuss the challenges in the field, both in terms of methods development and evaluation protocols. 
    more » « less
  3. Abstract A fundamental challenge in mass spectrometry-based proteomics is the identification of the peptide that generated each acquired tandem mass spectrum. Approaches that leverage known peptide sequence databases cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to tandem mass spectra without prior information—de novo peptide sequencing—is valuable for tasks including antibody sequencing, immunopeptidomics, and metaproteomics. Although many methods have been developed to address this problem, it remains an outstanding challenge in part due to the difficulty of modeling the irregular data structure of tandem mass spectra. Here, we describe Casanovo, a machine learning model that uses a transformer neural network architecture to translate the sequence of peaks in a tandem mass spectrum into the sequence of amino acids that comprise the generating peptide. We train a Casanovo model from 30 million labeled spectra and demonstrate that the model outperforms several state-of-the-art methods on a cross-species benchmark dataset. We also develop a version of Casanovo that is fine-tuned for non-enzymatic peptides. Finally, we demonstrate that Casanovo’s superior performance improves the analysis of immunopeptidomics and metaproteomics experiments and allows us to delve deeper into the dark proteome. 
    more » « less
  4. Mass spectrometry is the dominant technology in the field of proteomics, enabling high-throughput analysis of the protein content of complex biological samples. Due to the complexity of the instrumentation and resulting data, sophisticated computational methods are required for the processing and interpretation of acquired mass spectra. Machine learning has shown great promise to improve the analysis of mass spectrometry data, with numerous purpose-built methods for improving specific steps in the data acquisition and analysis pipeline reaching widespread adoption. Here, we propose unifying various spectrum prediction tasks under a single foundation model for mass spectra. To this end, we pre-train a spectrum encoder using de novo sequencing as a pre-training task. We then show that using these pre-trained spectrum representations improves our performance on the four downstream tasks of spectrum quality prediction, chimericity prediction, phosphorylation prediction, and glycosylation status prediction. Finally, we perform multi-task fine-tuning and find that this approach improves the performance on each task individually. Overall, our work demonstrates that a foundation model for tandem mass spectrometry proteomics trained on de novo sequencing learns generalizable representations of spectra, improves performance on downstream tasks where training data is limited, and can ultimately enhance data acquisition and analysis in proteomics experiments. 
    more » « less
  5. Abstract Epigenetic modifications directly regulate the patterns of gene expression by altering DNA accessibility and chromatin structure. A knowledge gap is presented by the need to directly measure these modifications, especially for unannotated organisms with unknown primary histone sequences. In the present work, we developed and applied a novel workflow for identifying and annotating histone proteoforms directly from mass spectrometry-based measurements for the endangered Caribbean coral Acropora cervicornis. Combining high-accuracy de novo top-down and bottom-up analysis based on tandem liquid chromatography, trapped ion mobility spectrometry, non-ergodic electron-based fragmentation, and high-resolution mass spectrometry, near complete primary sequence (up to 99%) and over 86 post-translational modification annotations were obtained from pull-down histone fractions. In the absence of reliable genome annotations, H2A, H2B, and H4 histone sequences and the annotation of the post-translational modifications of the stressed A. cervicornis coral allow for a better understanding of chromatin remodeling and new strategies for targeting intervention and restoration of endangered reef corals. 
    more » « less