skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topochemical synthesis of 2D materials
Since the demonstration of the unique properties of single-layer graphene and transition metal dichalcogenides (TMDs), research on two-dimensional (2D) materials has become one of the hottest topics, with the family of 2D materials quickly expanding. This expansion is mainly attributable to the development of new synthesis methods to create new materials. This review will summarize and critically analyze topochemical synthesis methods for synthesizing novel 2D materials. For example, the emerging family of 2D transition metal carbides, nitrides and carbonitrides (MXenes) are synthesized primarily by selective etching of “A” (metal) elements from MAX phases. Another 2D material, hydrogenated germanene is produced by selective etching of calcium digermanide (CaGe 2 ). The topochemical transformation of one dichalcogenide into another and 2D oxides into 2D carbides or nitrides have attracted great attention because materials with many useful and diverse properties can be obtained by these methods. Topochemical synthesis methods provide alternative ways of synthesizing 2D materials not requiring van der Waals bonded solid precursors or vapor phase deposition, but they have not been comprehensively reviewed. In this review, we describe common principles of topochemical synthesis of 2D materials, explain synthesis mechanisms and offer an outlook for future research.  more » « less
Award ID(s):
1740795
PAR ID:
10156808
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Society Reviews
Volume:
47
Issue:
23
ISSN:
0306-0012
Page Range / eLocation ID:
8744 to 8765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the ‘A’ layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed. 
    more » « less
  2. Two-dimensional (2D) transition metal carbides, nitrides and carbonitrides, known as MXenes, are of interest as electrocatalysts. Tungsten-based MXenes are predicted to have low overpotentials in the hydrogen evolution reaction but their synthesis has proven difficult due to the calculated instability of their hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a tungsten-based MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4−y precursor by the selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of tungsten and titanium ordering, the presence of vacancy defects in the metal layers, and the lack of oxygen impurities in the carbon layers for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of tungsten and titanium using computational and experimental characterizations. The tungsten-rich basal plane endows W2TiC2Tx MXene with a high electrocatalytic hydrogen evolution reaction performance (∼144 mV overpotential at 10 mA cm−2). This study reports a tungsten-based MXene synthesized from a covalently bonded non-MAX precursor, adding to the synthetic strategies for 2D materials. 
    more » « less
  3. Two-dimensional transition metal carbides, nitrides, and carbonitrides, known as MXenes, hold potential in electrocatalytic applications. Tungsten (W) based-MXenes are of particular interest as they are predicted to have low overpotentials in hydrogen evolution reaction (HER). However, incorporating W into the MXene structure has proven difficult due to the calculated instability of its hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a W-containing MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4-y precursor by selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of W and Ti ordering and the presence of vacancy defects for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of W and Ti using density functional theory, Rietveld refinement, and electron microscopy methods. Additionally, the W-rich basal plane endows W2TiC2Tx MXene with a remarkable HER overpotential (~144 mV at 10 mA/cm2). This study adds a tungsten-containing MXene made from a covalently bonded non-MAX phase opening more ways to synthesize novel 2D materials. 
    more » « less
  4. Abstract MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric‐acid‐based etchants are typically used for large‐scale and high‐throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine‐free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first‐principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the “CALculation of PHAse Diagrams” (CALPHAD) approach is further demonstrated, using Ti3C2I2as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine‐free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching. 
    more » « less
  5. MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4 N 3 and Ti 2 N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2 CT x and V 2 CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2 N and V 2 N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2 N retains the MXene structure and V 2 C transforms to a mixed layered structure of trigonal V 2 N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2 N and V 2 N are three and one order of magnitude larger than those of the Mo 2 CT x and V 2 CT x precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis. 
    more » « less