skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Informer: Irregular Traffic Detection for Containerized Microservices RPC in the Real World
Containerized microservices have been widely deployed in industry. Meanwhile, security issues also arise. Many security enhancement mechanisms for containerized microservices require predefined rules and policies. However, it is challenging when it comes to thousands of microservices and a massive amount of real-time unstructured data. Hence, automatic policy generation becomes indispensable. In this paper, we focus on the automatic solution for the security problem: irregular traffic detection for RPCs. We propose Informer, which is a two-phase machine learning framework to track the traffic of each RPC and report anomalous points automatically. Firstly, we identify RPC chain patterns by density-based clustering techniques and build a graph for each critical pattern. Next, we solve the irregular RPC traffic detection problem as a prediction problem for time-series of attributed graphs by leveraging spatial-temporal graph convolution networks. Since the framework builds multiple models and makes individual predictions for each RPC chain pattern, it can be efficiently updated upon legitimate changes in any of the graphs. In evaluations, we applied Informer to a dataset containing more than 7 billion lines of raw RPC logs sampled from an large Kubernetes system for two weeks. We provide two case studies of detected real-world threats. As a result, our framework found fine-grained RPC chain patterns and accurately captured the anomalies in a dynamic and complicated microservice production scenario, which demonstrates the effectiveness of Informer.  more » « less
Award ID(s):
1801751
PAR ID:
10156939
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM/IEEE Workshop on Security and Privacy in Edge Computing (Edge S&P)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The microservices architecture enables independent development and maintenance of application components through its fine-grained and modular design. This has enabled rapid adoption of microservices architecture to build latency-sensitive online applications. In such online applications, it is critical to detect and mitigate sources of performance degradation (bottlenecks). However, the modular design of microservices architecture leads to a large graph of interacting microservices whose influence on each other is non-trivial. In this preliminary work, we explore the effectiveness of Graph Neural Network models in detecting bottlenecks. Preliminary analysis shows that our framework, B-MEG, produces promising results, especially for applications with complex call graphs. B-MEG shows up to 15% and 14% improvements in accuracy and precision, respectively, and close to 10X increase in recall for detecting bottlenecks compared to the technique used in existing work for bottleneck detection in microservices. 
    more » « less
  2. null (Ed.)
    The microservice architecture is a popular software engineering approach for building flexible, large-scale online services. Serverless functions, or function as a service (FaaS), provide a simple programming model of stateless functions which are a natural substrate for implementing the stateless RPC handlers of microservices, as an alternative to containerized RPC servers. However, current serverless platforms have millisecond-scale runtime overheads, making them unable to meet the strict sub-millisecond latency targets required by existing interactive microservices. We present Nightcore, a serverless function runtime with microsecond-scale overheads that provides container-based isolation between functions. Nightcore’s design carefully considers various factors having microsecond-scale overheads, including scheduling of function requests, communication primitives, threading models for I/O, and concurrent function executions. Nightcore currently supports serverless functions written in C/C++, Go, Node.js, and Python. Our evaluation shows that when running latency-sensitive interactive microservices, Nightcore achieves 1.36×–2.93× higher throughput and up to 69% reduction in tail latency. 
    more » « less
  3. Application networks facilitate communication between the microservices of cloud applications. They are built today using service meshes with low-level specifications that make it difficult to express application-specific functionality (e.g., access control based on RPC fields), and they can more than double the RPC latency. We develop AppNet, a framework that makes it easy to build expressive and high-performance application networks. Developers specify rich RPC processing in a high-level language with generalized match-action rules and built-in state management. We compile the specifications to high-performance code after optimizing where (e.g., client, server) and how (e.g., RPC library, proxy) each RPC processing element runs. The optimization uses symbolic abstraction and execution to judge if different runtime configurations of possibly-stateful RPC processing elements are semantically equivalent for arbitrary RPC streams. Our experiments show that AppNet can express common application network function in only 7-28 lines of code. Its optimizations lower RPC processing latency by up to 82%. 
    more » « less
  4. null (Ed.)
    The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods. 
    more » « less
  5. Breadth-First Search (BFS) is a fundamental graph traversal algorithm in a level-by-level pattern. It has been widely used in real-world applications, such as social network analysis, scientific computing, and web crawling. However, achieving high performance for BFS on large-scale graphs remains a challenging task due to irregular memory access patterns, diverse graph structures, and the necessity for efficient parallelization. This paper addresses these challenges by designing a highly optimized parallel BFS implementation based on the top-down and bottom-up traversal strategies. It further integrates several key innovations, including graph typea-ware computation strategy selection, graph pruning, twolevel bottom-up, and efficient parallel implementation. We evaluate our method on 11 diverse graphs in terms of size, diameter, and density. On a CPU server with 48 threads, our method achieves an average speedup of 9.5x over the serial BFS implementation. Also, on a synthetic dense graph, our method processes 9.3 billion edges per second, showing its efficiency in dense graph traversal. 
    more » « less