skip to main content


Title: Nature-based approaches to managing climate change impacts in cities
Managing and adapting to climate change in urban areas will become increasingly important as urban populations grow, especially because unique features of cities amplify climate change impacts. High impervious cover exacerbates impacts of climate warming through urban heat island effects and of heavy rainfall by magnifying runoff and flooding. Concentration of human settlements along rivers and coastal zones increases exposure of people and infrastructure to climate change hazards, often disproportionately affecting those who are least prepared. Nature-based strategies (NBS), which use living organisms, soils and sediments, and/or landscape features to reduce climate change hazards, hold promise as being more flexible, multi-functional and adaptable to an uncertain and non-stationary climate future than traditional approaches. Nevertheless, future research should address the effectiveness of NBS for reducing climate change impacts and whether they can be implemented at scales appropriate to climate change hazards and impacts. Further, there is a need for accurate and comprehensive cost–benefit analyses that consider disservices and co-benefits, relative to grey alternatives, and how costs and benefits are distributed across different communities. NBS are most likely to be effective and fair when they match the scale of the challenge, are implemented with input from diverse voices and are appropriate to specific social, cultural, ecological and technological contexts. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.  more » « less
Award ID(s):
1832016 1444755 1927468 1638519
NSF-PAR ID:
10157055
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
375
Issue:
1794
ISSN:
0962-8436
Page Range / eLocation ID:
20190124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Anthropogenic pressures and climate change threaten the capacity of ecosystems to deliver a variety of services, including protecting coastal communities from hazards like flooding and erosion. Human interventions aim to buffer against or overcome these threats by providing physical protection for existing coastal infrastructure and communities, along with added ecological, social, or economic co-benefits. These interventions are a type of nature-based solution (NBS), broadly defined as actions working with nature to address societal challenges while also providing benefits for human well-being, biodiversity, and resilience. Despite the increasing popularity of NBS for coastal protection, sometimes in lieu of traditional hardened shorelines (e.g., oyster reefs instead of bulkheads), gaps remain in our understanding of whether common NBS interventions for coastal protection perform as intended. To help fill these knowledge gaps, we aim to identify, collate, and map the evidence base surrounding the performance of active NBS interventions related to coastal protection across a suite of ecological, physical, social, and economic outcomes in salt marsh, seagrass, kelp, mangrove, shellfish reef, and coral reef systems. The resulting evidence base will highlight the current knowledge on NBS performance and inform future uses of NBS meant for coastal protection.

    Methods

    Searches for primary literature on performance of NBS for coastal protection in shallow, biogenic ecosystems will be conducted using a predefined list of indexing platforms, bibliographic databases, open discovery citation indexes, and organizational databases and websites, as well as an online search engine and novel literature discovery tool. All searches will be conducted in English and will be restricted to literature published from 1980 to present. Resulting literature will be screened against set inclusion criteria (i.e., population, intervention, outcome, study type) at the level of title and abstract followed by full text. Screening will be facilitated by a web-based active learning tool that incorporates user feedback via machine learning to prioritize articles for review. Metadata will be extracted from articles that meet inclusion criteria and summarized in a narrative report detailing the distribution and abundance of evidence surrounding NBS performance, including evidence clusters, evidence gaps, and the precision and sensitivity of the search strategy.

     
    more » « less
  2. It is generally acknowledged that interdependent critical infrastructure in coastal urban areas is constantly threatened by storm-induced flooding. Due to changing climate effects, such as sea level rise (SLR), the occurrence of catastrophic events will be more frequent and may trigger an increased likelihood of severe hazards. Planning a protective measure or mitigation strategy is a complex problem given the constraints that it must fit within a prescribed and limited fiscal budget and be beneficial to the community it protects both socially and economically. This article proposes a methodology for optimizing protective measures and mitigation strategies for interdependent infrastructures subjected to storm-induced flooding and climate change impacts such as SLR. Optimality is defined in this methodology as a maximum reduction in overall expected losses within a prescribed budget (compared to the expected losses in the case of doing nothing for protection/mitigation). Protective measures can include seawalls, barriers, artificial dunes, restoration of wetlands, raising individual buildings, sealing parts of the infrastructure, strategic retreat, insurance, and many more. The optimal protective strategy can be a combination of several protective measures implemented over space and time. The optimization process starts with parameterizing the protective measures. Storm-induced flooding and SLR, and their corresponding consequences, are estimated using a GIS-based subdivision-redistribution methodology (GISSR) developed by the authors for finding a rough solution in the first brute-force iterations of the optimization loop. A storm surge computational model called GeoClaw is subsequently used to simulate ensembles of synthetic storms in order to fine-tune and achieve the optimal solution. Damage loss, including economic impacts, is quantified based on calculated flood estimates. The suitability of the potential optimal solution is examined and assessed with input from stakeholders' interviews. It should be mentioned that the results and conclusions provided in this work depend on the assumptions made about future sea level rise (SLR). The authors acknowledge that there are other, more severe predictions for sea level rise (SLR), than the one used in this paper. 
    more » « less
  3. Throughout history, urban agriculture practitioners have adapted to various challenges by continuing to provide food and social benefits. Urban gardens and farms have also responded to sudden political, economic, ecological, and social crises: wartime food shortages; urban disinvestment and property abandonment; earthquakes and floods; climate-change induced weather events; and global economic disruptions. This paper examines the effects on, and responses by, urban farms and gardens to the COVID-19 pandemic. The paper is based on data collected in the summer of 2020 at the onset of the pandemic when cities were struggling with appropriate responses to curb its spread. It builds on an international research project (FEW-meter) that developed a methodology to measure material and social benefits of urban agriculture (UA) in five countries (France, Germany, Poland, UK and USA) over two growing seasons, from a Food-Energy-Water nexus perspective. We surveyed project partners to ascertain the effects of COVID-19 on those gardens and farms and we interviewed policy stakeholders in each country to investigate the wider impacts of the pandemic on UA. We report the results with respect to five key areas: (1) garden accessibility and service provision during the pandemic; (2) adjustments to operational arrangements; (3) effects on production; (4) support for urban farms and gardens through the pandemic; and (5) thoughts about the future of urban agriculture in the recovery period and beyond. The paper shows that the pandemic resulted in multiple challenges to gardens and farms including the loss of ability to provide support services, lost income, and reductions in output because of reduced labor supply. But COVID-19 also created several opportunities: new markets to sell food locally; more time available to gardeners to work in their allotments; and increased community cohesion as neighboring gardeners looked out for one another. By illustrating the range of challenges faced by the pandemic, and strategies to address challenges used by different farms and gardens, the paper illustrates how gardens in this pandemic have adapted to become more resilient and suggests lessons for pandemic recovery and longer-term planning to enable UA to respond to future public health and other crises. 
    more » « less
  4. This perspective paper highlights the potentials, limitations, and combinations of openly available Earth observation (EO) data and big data in the context of environmental research in urban areas. The aim is to build the resilience of informal settlements to climate change impacts. In particular, it highlights the types, categories, spatial and temporal scales of publicly available big data. The benefits of publicly available big data become clear when looking at issues such as the development and quality of life in informal settlements within and around major African cities. Sub-Saharan African (SSA) cities are among the fastest growing urban areas in the world. However, they lack spatial information to guide urban planning towards climate-adapted cities and fair living conditions for disadvantaged residents who mostly reside in informal settlements. Therefore, this study collected key information on freely available data such as data on land cover, land use, and environmental hazards and pressures, demographic and socio-economic indicators for urban areas. They serve as a vital resource for success of many other related local studies, such as the transdisciplinary research project “DREAMS—Developing REsilient African cities and their urban environMent facing the provision of essential urban SDGs”. In the era of exponential growth of big data analytics, especially geospatial data, their utility in SSA is hampered by the disparate nature of these datasets due to the lack of a comprehensive overview of where and how to access them. This paper aims to provide transparency in this regard as well as a resource to access such datasets. Although the limitations of such big data are also discussed, their usefulness in assessing environmental hazards and human exposure, especially to climate change impacts, are emphasised. 
    more » « less
  5. Land-use land-cover (LULC) changes are occurring rapidly in Southeast Asia (SEA), generally associated with population growth, economic development and competing demands for land. Land cover change is one of the vital factors affecting carbon dynamics and emissions. SEA is an important region to study urban-caused LULC emissions and the potential for nature-based solutions (NBS) and nature climate solutions (NCS), as it is home to nearly 15% of the world’s tropical forests and has some of the world’s fastest rates of urban growth. We present a fine-scale urban cluster level assessment for SEA of current (2015) and future (2050) scenarios for carbon sequestration service and climate mitigation potential. We identified 956 urban clusters distributed across 11 countries of SEA. Considering the urban expansion projected and decline in forests, this region could see a carbon loss of up to 0.11 Gigatonnes (Scenario SSP4 RCP 3.4). Comparing carbon change values to urban emissions, we found that the average offset value ranging from −2% (Scenario SSP1 RCP 2.6) to −21%. We also found that a few medium and large urban clusters could add to more than double the existing carbon emissions in 2050 in the SSP3 and SSP4 RCP 3.4 scenarios, while a minority of clusters could offset their emissions under SSP1. Our study confirms that NCS, and particularly reforestation, are in many cases able to offset the direct emissions from land cover conversion from SEA urban clusters. Hence, documenting the plausible LULC transitions and the associated impacts gains significance in the SEA region as the results can be useful for informing policy and sustainable land management.

     
    more » « less