Demonstrations and natural language instructions are two common ways to specify and teach robots novel tasks. However, for many complex tasks, a demonstration or language instruction alone contains ambiguities, preventing tasks from being specified clearly. In such cases, a combination of both a demonstration and an instruction more concisely and effectively conveys the task to the robot than either modality alone. To instantiate this problem setting, we train a single multi-task policy on a few hundred challenging robotic pick-and-place tasks and propose DeL-TaCo (Joint Demo-Language Task Conditioning), a method for conditioning a robotic policy on task embeddings comprised of two components: a visual demonstration and a language instruction. By allowing these two modalities to mutually disambiguate and clarify each other during novel task specification, DeL-TaCo (1) substantially decreases the teacher effort needed to specify a new task and (2) achieves better generalization performance on novel objects and instructions over previous task-conditioning methods. To our knowledge, this is the first work to show that simultaneously conditioning a multi-task robotic manipulation policy on both demonstration and language embeddings improves sample efficiency and generalization over conditioning on either modality alone. See additional materials at https://sites.google.com/view/del-taco-learning 
                        more » 
                        « less   
                    
                            
                            Deep Multi-Task Learning with Adversarial-and-Cooperative Nets
                        
                    
    
            In this paper, we propose a deep multi-Task learning model based on Adversarial-and-COoperative nets (TACO). The goal is to use an adversarial-and-cooperative strategy to decouple the task-common and task-specific knowledge, facilitating the fine-grained knowledge sharing among tasks. TACO accommodates multiple game players, i.e., feature extractors, domain discriminator, and tri-classifiers. They play the MinMax games adversarially and cooperatively to distill the task-common and task-specific features, while respecting their discriminative structures. Moreover, it adopts a divide-and-combine strategy to leverage the decoupled multi-view information to further improve the generalization performance of the model. The experimental results show that our proposed method significantly outperforms the state-of-the-art algorithms on the benchmark datasets in both multi-task learning and semi-supervised domain adaptation scenarios. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10159295
- Date Published:
- Journal Name:
- IJCAI
- Page Range / eLocation ID:
- 4078 to 4084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In the field of multi-agent autonomous transportation, such as automated payload delivery or highway on-ramp merging, agents routinely exchange knowledge to optimize their shared objective and adapt to environmental novelties through Cooperative Multi-Agent Reinforcement Learning (CMARL) algorithms. This knowledge exchange between agents allows these systems to operate efficiently and adapt to dynamic environments. However, this cooperative learning process is susceptible to adversarial poisoning attacks, as highlighted by contemporary research. Particularly, the poisoning attacks where malicious agents inject deceptive information camouflaged within the differential noise, a pivotal element for differential privacy (DP)-based CMARL algorithms, pose formidable challenges to identify and overcome. The consequences of not addressing this issue are far-reaching, potentially jeopardizing safety-critical operations and the integrity of data privacy in these applications. Existing research has strived to develop anomaly detection based defense models to counteract conventional poisoning methods. Nonetheless, the recurring necessity for model offloading and retraining with labeled anomalous data undermines their practicality, considering the inherently dynamic nature of the safety-critical autonomous transportation applications. Further, it is imperative to maintain data privacy, ensure high performance, and adapt to environmental changes. Motivated by these challenges, this article introduces a novel defense mechanism against stealthy adversarial poisoning attacks in the autonomous transportation domain, termedReinforcing Autonomous Multi-agent Protection through Adversarial Resistance in Transportation(RAMPART). Leveraging a GAN model at each local node, RAMPART effectively filters out malicious advice in an unsupervised manner while generating synthetic samples for each state-action pair to accommodate environmental uncertainties and eliminate the need for labeled training data. Our extensive experimental analysis, conducted in a private payload delivery network—a common application in the autonomous multi-agent transportation domain—demonstrates that RAMPART successfully defends against a DP-exploited poisoning attack with a 30% attack ratio, achieving an F1 score of 0.852 and accuracy of 96.3% in heavy traffic environments.more » « less
- 
            In this paper, we propose Task-Adversarial co-Generative Nets (TAGN) for learning from multiple tasks. It aims to address the two fundamental issues of multi-task learning, i.e., domain shift and limited labeled data, in a principled way. To this end, TAGN first learns the task-invariant representations of features to bridge the domain shift among tasks. Based on the task-invariant features, TAGN generates the plausible examples for each task to tackle the data scarcity issue. In TAGN, we leverage multiple game players to gradually improve the quality of the co-generation of features and examples by using an adversarial strategy. It simultaneously learns the marginal distribution of task-invariant features across different tasks and the joint distributions of examples with labels for each task. The theoretical study shows the desired results: at the equilibrium point of the multi-player game, the feature extractor exactly produces the task-invariant features for different tasks, while both the generator and the classifier perfectly replicate the joint distribution for each task. The experimental results on the benchmark data sets demonstrate the effectiveness of the proposed approach.more » « less
- 
            null (Ed.)With the requirements of natural language applications, multi-task sequence labeling methods have some immediate benefits over the single-task sequence labeling methods. Recently, many state-of-the-art multi-task sequence labeling methods were proposed, while still many issues to be resolved including (C1) exploring a more general relationship between tasks, (C2) extracting the task-shared knowledge purely and (C3) merging the task-shared knowledge for each task appropriately. To address the above challenges, we propose MTAA , a symmetric multi-task sequence labeling model, which performs an arbitrary number of tasks simultaneously. Furthermore, MTAA extracts the shared knowledge among tasks by adversarial learning and integrates the proposed multi-representation fusion attention mechanism for merging feature representations. We evaluate MTAA on two widely used data sets: CoNLL2003 and OntoNotes5.0. Experimental results show that our proposed model outperforms the latest methods on the named entity recognition and the syntactic chunking task by a large margin, and achieves state-of-the-art results on the part-of-speech tagging task.more » « less
- 
            Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models have shown tremendous progress towards adapting to new environments by focusing either on discovering domain invariant representations or by mapping between unpaired image domains. While feature space methods are difficult to interpret and sometimes fail to capture pixel-level and low-level domain shifts, image space methods sometimes fail to incorporate high level semantic knowledge relevant for the end task. We propose a model which adapts between domains using both generative image space alignment and latent representation space alignment. Our approach, Cycle-Consistent Adversarial Domain Adaptation (CyCADA), guides transfer between domains according to a specific discriminatively trained task and avoids divergence by enforcing consistency of the relevant semantics before and after adaptation. We evaluate our method on a variety of visual recognition and prediction settings, including digit classification and semantic segmentation of road scenes, advancing state-of-the-art performance for unsupervised adaptation from synthetic to real world driving domains.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    