skip to main content

Title: Two new double-lined spectroscopic binary white dwarfs
ABSTRACT We present radial velocity observations of four binary white dwarf candidates identified through their overluminosity. We identify two new double-lined spectroscopic binary systems, WD 0311–649 and WD 1606+422, and constrain their orbital parameters. WD 0311–649 is a 17.7 h period system with a mass ratio of 1.44 ± 0.06 and WD 1606+422 is a 20.1 h period system with a mass ratio of 1.33 ± 0.03. An additional object, WD 1447–190, is a 43 h period single-lined white dwarf binary, whereas WD 1418–088 does not show any significant velocity variations over time-scales ranging from minutes to decades. We present an overview of the 14 overluminous white dwarfs that were identified by Bédard et al., and find the fraction of double- and single-lined systems to be both 31 per cent. However, an additional 31 per cent of these overluminous white dwarfs do not show any significant radial velocity variations. We demonstrate that these must be in long-period binaries that may be resolved by Gaia astrometry. We also discuss the overabundance of single low-mass white dwarfs identified in the SPY survey, and suggest that some of those systems are also likely long-period binary systems of more massive white dwarfs.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2805 to 2816
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present high-resolution spectroscopy of two nearby white dwarfs with inconsistent spectroscopic and parallax distances. The first one, PG 1632+177, is a 13th magnitude white dwarf only 25.6 pc away. Previous spectroscopic observations failed to detect any radial velocity changes in this star. Here, we show that PG 1632+177 is a 2.05-d period double-lined spectroscopic binary (SB2) containing a low-mass He-core white dwarf with a more-massive, likely CO-core white dwarf companion. After L 870−2, PG 1632+177 becomes the second closest SB2 white dwarf currently known. Our second target, WD 1534+503, is also an SB2 system with an orbital period of 0.71 d. For each system, we constrain the atmospheric parameters of both components through a composite model-atmosphere analysis. We also present a new set of non-local thermodynamic equilibrium (NLTE) synthetic spectra appropriate for modelling high-resolution observations of cool white dwarfs, and show that NLTE effects in the core of the H α line increase with decreasing effective temperature. We discuss the orbital period and mass distribution of SB2 and eclipsing double white dwarfs with orbital constraints, and demonstrate that the observed population is consistent with the predicted period distribution from the binary population synthesis models. The latter predict more massive COmore »+ CO white dwarf binaries at short (<1 d) periods, as well as binaries with several day orbital periods; such systems are still waiting to be discovered in large numbers.« less

    A new class of white dwarfs, dubbed DAHe, that present Zeeman-split Balmer lines in emission has recently emerged. However, the physical origin of these emission lines remains unclear. We present here a sample of 21 newly identified DAHe systems and determine magnetic field strengths and (for a subset) periods that span the ranges of ≃6.5–147 MG and ≃0.4–36 h, respectively. All but four of these systems were identified from the Dark Energy Spectroscopic Instrument survey sample of more than 47 000 white dwarf candidates observed during its first year of observations. We present detailed analysis of the new DAHe WD J161634.36+541011.51 with a spin period of 95.3 min, which exhibits an anticorrelation between broad-band flux and Balmer line strength that is typically observed for this class of systems. All DAHe systems cluster closely on the Gaia Hertzsprung–Russell diagram where they represent ≃1 per cent of white dwarfs within that region. This grouping further solidifies their unexplained emergence at relatively late cooling times and we discuss this in context of current formation theories. Nine of the new DAHe systems are identifiable from Sloan Digital Sky Survey spectra of white dwarfs that had been previously classified as featureless DC-type systems. We suggest high-S/N (signal-to-noise ratios), unbiased observations ofmore »DCs as a possible route for discovering additional DAHe systems.

    « less
  3. Context. About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to different phenomena. Aims. Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods. By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia , and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection effect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs withmore »white dwarf companions. Results. The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, differs from those with white dwarf companions, implying they come from different populations. By comparing the period and minimum companion mass distributions, we find that the reflection effect systems all have M dwarf or brown dwarf companions, and that there seem to be several different populations of hot subdwarfs with white dwarf binaries – one with white dwarf minimum masses around 0.4  M ⊙ , one with longer periods and minimum companion masses up to 0.6  M ⊙ , and at the shortest period, another with white dwarf minimum masses around 0.8  M ⊙ . We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.« less
  4. Abstract The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present wemore »are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters.« less
  5. Abstract

    We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07MandM2= 2.10 ± 0.03M. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this systemmore »also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260.

    « less