This paper presents examples of high-speed 3D optical sensing for research and applications in the manufacturing community. Specifically, this paper will focus on the fringe projection technique as a special technology that can be extremely beneficial to manufacturing applications, given its merits of simultaneous high-speed and high-accuracy 3D surface measurements. This paper will introduce the basic principles of 3D optical sensing based on the fringe projection technique as well as the enabled manufacturing research applications, including both in-situ/in-process monitoring and post-process quality assurance.
more »
« less
Design for metrology for freeform optics manufacturing
Freeform optical surfaces offer significant design opportunities but pose new challenges in metrology and manufacturing. Evolution in optics
manufacturing processes have changed the surface spatial frequencies that must be measured. Optical surface definition is expected to be with
respect to fiducials and datums which must be realizable at all stages of manufacture; uncertainty in that realization becomes important in some
cases. Concurrent engineering is required, but appropriate data has not been collated for use by optical designers. One approach to providing such data is described.
more »
« less
- NSF-PAR ID:
- 10161177
- Date Published:
- Journal Name:
- CIRP
- Volume:
- 84
- Issue:
- 2212-8271
- ISSN:
- 0373-7284
- Page Range / eLocation ID:
- 169-172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the fast development of Industry 4.0, the ways in which manufacturing workers handle machines, materials, and products also change drastically. Such changes post several demanding challenges to the training of future workforce. First, personalized manufacturing will lead to small batch and fast changing tasks. The training procedure must demonstrate agility. Second, new interfaces to interact with human or robots will change the training procedure. Last but not least, in addition to handling the physical objects, a worker also needs to be trained to digest and respond to rich data generated at the manufacturing site. To respond to these challenges, in this paper we describe the design of an AI-assisted training platform for manufacturing workforce. The platform will collect rich data from both machines and workers. It will capture and analyze both macro and micro movement of trainees with the help of AI algorithms. At the same time, training for interaction with robot/cobot will also be covered. Mixed reality will be used to create in-situ experiences for the trainee.more » « less
-
null (Ed.)As demands on manufacturing rapidly evolve, flexible manufacturing is becoming more essential for acquiring the necessary productivity to remain competitive. An innovative approach to flexible manufacturing is the introduction of fenceless robotic manufacturing cells to acquire and leverage greater human-robot collaboration (HRC). This involves operations in which a human and a robot share a space, complete tasks together, and interact with each other. Such operations, however, pose serious safety concerns. Before HRC can become a viable possibility, robots must be capable of safely operating within and responding to events in dynamic environments. Furthermore, the robot must be able to do this quickly during online operation. This paper outlines an algorithm for predictive collision detection. This algorithm gives the robot the ability to look ahead at its trajectory, and the trajectories of other bodies in its environment and predict potential collisions. The algorithm approximates a continuous swept volume of any articulated body along its trajectory by taking only a few time sequential samples of the predicted orientations of the body and creating surfaces that patch the orientations together with Coons patches. Run time data collected on this algorithm suggest that the algorithm can accurately predict future collisions in under 30 ms.more » « less
-
Panning, Eric M ; Liddle, J Alexander (Ed.)Roll-to-roll and other high-speed printing manufacturing processes are increasingly being extended to micro- and nanoelectronics and photonics due to cost and throughput advantages as compared with traditional wafer-scale manufacturing. The extra degrees of freedom associated with a moving web require high speed, in-line metrology to control the manufacturing process. Many state-of-the-art metrology approaches have sub-10 nm resolution but cannot be implemented during real-time fabrication processes because of environmental constraints or contact/cross sectional requirements. Optical angular scatterometry is a non-contact metrology approach that can be implemented at high speed. We demonstrate a system that uses 45° off-axis parabolic mirrors and an 8kHz resonant scanner to vary the incident/reflected angle from ~17° to ~67°, suitable for nanoscale metrology at web speeds of up to 350 cm/s, well-beyond the speed of current manufacturing tools. Scatterometry is sensitive not only to gross defects (missing pattern sections) but also to variations in nanoscale pattern details, offering a pathway to feedback control of the manufacturing process.more » « less
-
This paper provides a practical connection between the Strehl ratio as an optical performance metric and manufacturing parameters for diamond-machined optics. The choice of fabrication parameters impacts residual midspatial frequency groove structures over the part’s surface, which reduce optical performance. Connections between the Strehl ratio and the fabrication parameters are studied using rigorous Rayleigh–Sommerfeld simulations for a sample optical system. The connections are generalized by incorporating the shape of diamond-machined groove structures and the effects of optical path differences for both transmissive and reflective optics. This work validates the analytical representation of the Strehl ratio as a Fourier transform of a probability density that relates to surface errors. The result is a practical tool that can be used to guide the choice of machining parameters to achieve a targeted optical performance. © 2019 Optical Society of America https://doi.org/10.1364/AO.58.003272more » « less