skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-shot phase calibration of a spatial light modulator using geometric phase interferometry
A vibration-insensitive, single-shot phase-calibration method for phase-only spatial light modulators (SLM) is reported. The proposed technique uses a geometric phase lens to forma phase-shifting radial shearing interferometer to enable common-path measurements. This configuration has several advantages: (a) unlike diffraction-based SLM calibration techniques, this technique is robust against intensity errors due to misalignment; (b) unlike twobeam interferometers, this technique offers a high environmental stability; and (c) unlike intensity-based methods, the phase-shifting capability provides a phase uncertainty routinely in the order of 2=100. The experimental results show a significantly higher accuracy when compared to the diffraction-based approaches. © 2020 Optical Society of America https://doi.org/10.1364/AO.383610  more » « less
Award ID(s):
1822049 1338877 1822026
PAR ID:
10161242
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied optics
Volume:
59
Issue:
13
ISSN:
1559-128X
Page Range / eLocation ID:
D125-D130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Channeled spectropolarimetry measures the spectral dependence of the polarization states of light. This technique is marked by its snapshot feature, in that the complete polarization states can be determined simultaneously from a single intensity spectrum. However, without athermalization, it suffers from high sensitivity to temperature, which in turn, degrades the polarimetric reconstruction accuracy. In this paper, we present a calibration technique for a fiber-based channeled spectropolarimetry that leverages phase-shifting interferometry to accurately demodulate the retarders' phase, thereby improving the accuracy of the acquired Stokes parameters. Additionally, it enables robust spectropolarimetric performance that is insensitive to environmental perturbations. Experimental results demonstrate that calibrations using phase-shifting interferometry improve the Stokes reconstruction results by approximately a factor of 3 when compared to the reference beam calibration method. 
    more » « less
  2. We propose a novel and simple snapshot phase-shifting diffraction phase microscope with a polarization grating and spatial phase-shifting technology. Polarization grating separates the incident beam into left and right circular polarization beams, one of which is used as the reference beam after passing through a pinhole. Four phase-shifted interferograms can be captured simultaneously from the polarization camera to reconstruct the high spatial resolution phase map. The principle is presented in this Letter, and the performance of the proposed system is demonstrated experimentally. Due to the near-common-path configuration and snapshot feature, the proposed system provides a feasible way for real-time quantitative phase measurement with minimal sensitivity to vibration and thermal disturbance. 
    more » « less
  3. This study compares the accuracy of circular and linear fringe projection profilometry in the aspects of system calibration and 3D reconstruction. We introduce, what we believe to be, a novel calibration method and 3D reconstruction technique using circular and radial fringe patterns. Our approach is compared with the traditional linear phase-shifting method through several 2 × 2 experimental setups. Results indicate that our 3D reconstruction method surpasses the linear phase-shifting approach in performance, although calibration efficiency does not present a superior performance. Further analysis reveals that sensitivity and estimated phase error contribute to the relative underperformance in calibration. This paper offers insights into the potentials and limitations of circular fringe projection profilometry. 
    more » « less
  4. We report the simulation of an adaptive interferometric null test using a high-definition phase-only spatial light modulator (SLM) to measure form and mid spatial frequencies of a freeform mirror with a sag departure of 150 μm from its base sphere. A state-of-the-art commercial SLM is modeled as a reconfigurable phase computer generated hologram (CGH) that generates a nulling phase function with close to an order of magnitude higher amplitude than deformable mirrors. The theoretical uncertainty in form measurement arising from pixelation and phase quantization of the SLM is 50.62 nm RMS. The calibration requirements for hardware implementation are detailed. © 2019 Optical Society of America https://doi.org/10.1364/OL.44.002000 
    more » « less
  5. Many emerging, high-speed, reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. We propose a gradient-based inverse-designed, static phase-mask doublet to generate arbitrary 2D intensity wavefronts using a one-dimensional (1D) intensity spatial light modulator (SLM). We numerically simulate the capability of mapping each point in a 49 element 1D array to a distinct 7 ×<#comment/> 7 2D spatial distribution. Our proposed method will significantly relax the routing complexity of electrical control signals, possibly enabling high-speed, sub-wavelength 2D SLMs leveraging new materials and pixel architectures. 
    more » « less