- NSF-PAR ID:
- 10161242
- Date Published:
- Journal Name:
- Applied optics
- Volume:
- 59
- Issue:
- 13
- ISSN:
- 1559-128X
- Page Range / eLocation ID:
- D125-D130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Channeled spectropolarimetry measures the spectral dependence of the polarization states of light. This technique is marked by its snapshot feature, in that the complete polarization states can be determined simultaneously from a single intensity spectrum. However, without athermalization, it suffers from high sensitivity to temperature, which in turn, degrades the polarimetric reconstruction accuracy. In this paper, we present a calibration technique for a fiber-based channeled spectropolarimetry that leverages phase-shifting interferometry to accurately demodulate the retarders' phase, thereby improving the accuracy of the acquired Stokes parameters. Additionally, it enables robust spectropolarimetric performance that is insensitive to environmental perturbations. Experimental results demonstrate that calibrations using phase-shifting interferometry improve the Stokes reconstruction results by approximately a factor of 3 when compared to the reference beam calibration method.more » « less
-
This study compares the accuracy of circular and linear fringe projection profilometry in the aspects of system calibration and 3D reconstruction. We introduce, what we believe to be, a novel calibration method and 3D reconstruction technique using circular and radial fringe patterns. Our approach is compared with the traditional linear phase-shifting method through several 2 × 2 experimental setups. Results indicate that our 3D reconstruction method surpasses the linear phase-shifting approach in performance, although calibration efficiency does not present a superior performance. Further analysis reveals that sensitivity and estimated phase error contribute to the relative underperformance in calibration. This paper offers insights into the potentials and limitations of circular fringe projection profilometry.
-
We propose a novel and simple snapshot phase-shifting diffraction phase microscope with a polarization grating and spatial phase-shifting technology. Polarization grating separates the incident beam into left and right circular polarization beams, one of which is used as the reference beam after passing through a pinhole. Four phase-shifted interferograms can be captured simultaneously from the polarization camera to reconstruct the high spatial resolution phase map. The principle is presented in this Letter, and the performance of the proposed system is demonstrated experimentally. Due to the near-common-path configuration and snapshot feature, the proposed system provides a feasible way for real-time quantitative phase measurement with minimal sensitivity to vibration and thermal disturbance.
-
We report the simulation of an adaptive interferometric null test using a high-definition phase-only spatial light modulator (SLM) to measure form and mid spatial frequencies of a freeform mirror with a sag departure of 150 μm from its base sphere. A state-of-the-art commercial SLM is modeled as a reconfigurable phase computer generated hologram (CGH) that generates a nulling phase function with close to an order of magnitude higher amplitude than deformable mirrors. The theoretical uncertainty in form measurement arising from pixelation and phase quantization of the SLM is 50.62 nm RMS. The calibration requirements for hardware implementation are detailed. © 2019 Optical Society of America https://doi.org/10.1364/OL.44.002000more » « less
-
Orthogonal frequency division multiplexing (OFDM) is a candidate technique to provide high-speed data transmissions for optical communication systems. For intensity modulation and direct detection (IM/DD) optical communication systems, only real and non-negative valued signals can be transmitted due to the natural properties of the transmitters and receivers. This paper proposes a technique called magnitude-phase optical OFDM (MPO-OFDM) that transmits the magnitude and phase of the conventional complex valued OFDM signal successively, similar to polar-based OFDM. Unlike polar-based OFDM, however, the proposed MPO-OFDM quantizes, encodes, and transmits the phase information using pulse amplitude modulation (PAM) to reduce the interference introduced by the additive noise on the phase. Considering the peak radiation power constraint of optical devices, the magnitude component of the MPO-OFDM signal experiences clipping distortion. In this paper, we optimally adjust the modulation index to control the scale of the magnitude component and achieve the highest signal to noise ratio (SNR). For the same transmitted data rate, the proposed MPO-OFDM can achieve a lower bit error rate than previously proposed techniques. For a similar BER performance, MPO-OFDM can support a higher throughput than the other techniques tested.more » « less