Let $$\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$$ and $$\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$$ , where $$p_{n}/q_{n}$$ is the continued fraction approximation to $$\unicode[STIX]{x1D6FC}$$ . Let $$(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$$ be the almost Mathieu operator on $$\ell ^{2}(\mathbb{Z})$$ , where $$\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ .
more »
« less
Slender body theory for particles with non-circular cross-sections with application to particle dynamics in shear flows
This paper presents a theory to obtain the force per unit length acting on a slender filament with a non-circular cross-section moving in a fluid at low Reynolds number. Using a regular perturbation of the inner solution, we show that the force per unit length has $$O(1/\ln (2A))+O(\unicode[STIX]{x1D6FC}/\ln ^{2}(2A))$$ contributions driven by the relative motion of the particle and the local fluid velocity and an $$O(\unicode[STIX]{x1D6FC}/(\ln (2A)A))$$ contribution driven by the gradient in the imposed fluid velocity. Here, the aspect ratio ( $$A=l/a_{0}$$ ) is defined as the ratio of the particle size ( $$l$$ ) to the cross-sectional dimension ( $$a_{0}$$ ) and $$\unicode[STIX]{x1D6FC}$$ is the amplitude of the non-circular perturbation. Using thought experiments, we show that two-lobed and three-lobed cross-sections affect the response to relative motion and velocity gradients, respectively. A two-dimensional Stokes flow calculation is used to extend the perturbation analysis to cross-sections that deviate significantly from a circle (i.e. $$\unicode[STIX]{x1D6FC}\sim O(1)$$ ). We demonstrate the ability of our method to accurately compute the resistance to translation and rotation of a slender triaxial ellipsoid. Furthermore, we illustrate novel dynamics of straight rods in a simple shear flow that translate and rotate quasi-periodically if they have two-lobed cross-section, and rotate chaotically and translate diffusively if they have a combination of two- and three-lobed cross-sections. Finally, we show the remarkable ability of our theory to accurately predict the motion of rings, retaining great accuracy for moderate aspect ratios ( $${\sim}10$$ ) and cross-sections that deviate significantly from a circle, thereby making our theory a computationally inexpensive alternative to other Stokes flow solvers.
more »
« less
- Award ID(s):
- 1803156
- PAR ID:
- 10162408
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 877
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 1098 to 1133
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The hydrodynamic quantification of superhydrophobic slipperiness has traditionally employed two canonical problems – namely, shear flow about a single surface and pressure-driven channel flow. We here advocate the use of a new class of canonical problems, defined by the motion of a superhydrophobic particle through an otherwise quiescent liquid. In these problems the superhydrophobic effect is naturally measured by the enhancement of the Stokes mobility relative to the corresponding mobility of a homogeneous particle. We focus upon what may be the simplest problem in that class – the rotation of an infinite circular cylinder whose boundary is periodically decorated by a finite number of infinite grooves – with the goal of calculating the rotational mobility (velocity-to-torque ratio). The associated two-dimensional flow problem is defined by two geometric parameters – namely, the number $$N$$ of grooves and the solid fraction $$\unicode[STIX]{x1D719}$$ . Using matched asymptotic expansions we analyse the large- $$N$$ limit, seeking the mobility enhancement from the respective homogeneous-cylinder mobility value. We thus find the two-term approximation, $$\begin{eqnarray}\displaystyle 1+{\displaystyle \frac{2}{N}}\ln \csc {\displaystyle \frac{\unicode[STIX]{x03C0}\unicode[STIX]{x1D719}}{2}}, & & \displaystyle \nonumber\end{eqnarray}$$ for the ratio of the enhanced mobility to the homogeneous-cylinder mobility. Making use of conformal-mapping techniques and inductive arguments we prove that the preceding approximation is actually exact for $$N=1,2,4,8,\ldots$$ . We conjecture that it is exact for all $$N$$ .more » « less
-
In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence $${\mathcal{D}}$$ , we obtain a sharp criterion such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ for a certain one-parameter family of $$\unicode[STIX]{x1D713}$$ . Also, under a minor condition on pseudo-absolute-value sequences $${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$$ , we obtain a sharp criterion on a general sequence $$\unicode[STIX]{x1D713}(n)$$ such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ .more » « less
-
Let $$f\in C^{2}(\mathbb{T}^{2})$$ have mean value 0 and consider $$\begin{eqnarray}\sup _{\unicode[STIX]{x1D6FE}\,\text{closed geodesic}}\frac{1}{|\unicode[STIX]{x1D6FE}|}\biggl|\int _{\unicode[STIX]{x1D6FE}}f\,d{\mathcal{H}}^{1}\biggr|,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6FE}$$ ranges over all closed geodesics $$\unicode[STIX]{x1D6FE}:\mathbb{S}^{1}\rightarrow \mathbb{T}^{2}$$ and $$|\unicode[STIX]{x1D6FE}|$$ denotes its length. We prove that this supremum is always attained. Moreover, we can bound the length of the geodesic $$\unicode[STIX]{x1D6FE}$$ attaining the supremum in terms of the smoothness of the function: for all $$s\geq 2$$ , $$\begin{eqnarray}|\unicode[STIX]{x1D6FE}|^{s}{\lesssim}_{s}\biggl(\max _{|\unicode[STIX]{x1D6FC}|=s}\Vert \unicode[STIX]{x2202}_{\unicode[STIX]{x1D6FC}}f\Vert _{L^{1}(\mathbb{T}^{2})}\biggr)\Vert \unicode[STIX]{x1D6FB}f\Vert _{L^{2}}\Vert f\Vert _{L^{2}}^{-2}.\end{eqnarray}$$more » « less
-
We consider the unbounded settling dynamics of a circular disk of diameter $$d$$ and finite thickness $$h$$ evolving with a vertical speed $$U$$ in a linearly stratified fluid of kinematic viscosity $$\unicode[STIX]{x1D708}$$ and diffusivity $$\unicode[STIX]{x1D705}$$ of the stratifying agent, at moderate Reynolds numbers ( $$Re=Ud/\unicode[STIX]{x1D708}$$ ). The influence of the disk geometry (diameter $$d$$ and aspect ratio $$\unicode[STIX]{x1D712}=d/h$$ ) and of the stratified environment (buoyancy frequency $$N$$ , viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity $$U/\sqrt{\unicode[STIX]{x1D708}N}$$ becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level.more » « less