skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: How Drag Force Evolves in Global Common Envelope Simulations
Abstract We compute the forces, torque and rate of work on the companion-core binary due to drag in global simulations of common envelope (CE) evolution for three different companion masses. Our simulations help to delineate regimes when conventional analytic drag force approximations are applicable. During and just prior to the first periastron passage of the in-spiral phase, the drag force is reasonably approximated by conventional analytic theory and peaks at values proportional to the companion mass. Good agreement between global and local 3D “wind tunnel” simulations, including similar net drag force and flow pattern, is obtained for comparable regions of parameter space. However, subsequent to the first periastron passage, the drag force is up to an order of magnitude smaller than theoretical predictions, quasi-steady, and depends only weakly on companion mass. The discrepancy is exacerbated for larger companion mass and when the inter-particle separation reduces to the Bondi-Hoyle-Lyttleton accretion radius, creating a turbulent thermalized region. Greater flow symmetry during this phase leads to near balance of opposing gravitational forces in front of and behind the companion, hence a small net drag. The reduced drag force at late times helps explain why companion-core separations necessary for envelope ejection are not reached by the end of limited duration CE simulations.  more » « less
Award ID(s):
1813298
NSF-PAR ID:
10163582
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    It has long been speculated that jet feedback from accretion on to the companion during a common envelope (CE) event could affect the orbital evolution and envelope unbinding process. We present global 3D hydrodynamical simulations of CE evolution (CEE) that include a jet subgrid model and compare them with an otherwise identical model without a jet. Our binary consists of a 2-M⊙ red giant branch primary and a 1- or 0.5-M⊙ main sequence (MS) or white dwarf (WD) secondary companion modelled as a point particle. We run the simulations for 10 orbits (40 d). Our jet model adds mass at a constant rate $\dot{M}_\mathrm{j}$ of the order of the Eddington rate, with maximum velocity vj of the order of the escape speed, to two spherical sectors with the jet axis perpendicular to the orbital plane. We explore the influence of the jet on orbital evolution, envelope morphology and envelope unbinding, and assess the dependence of the results on the jet mass-loss rate, launch speed, companion mass, opening angle, and accretion rate. In line with our theoretical estimates, jets are choked around the time of first periastron passage and remain choked thereafter. Subsequent to choking, but not before, jets efficiently transfer energy to bound envelope material. This leads to increases in unbound mass of up to $\sim 10{{\ \rm per\ cent}}$, as compared to the simulations without jets. We also estimate the cumulative effects of jets over a full CE phase, finding that jets launched by MS and WD companions are unlikely to dominate envelope unbinding.

     
    more » « less
  2. The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution. 
    more » « less
  3. The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations. 
    more » « less
  4. Abstract

    If the envelope of a massive star is not entirely removed during common envelope (CE) interaction with an orbiting compact (e.g., black hole (BH) or neutron star (NS)) companion, the residual bound material eventually cools, forming a centrifugally supported disk around the binary containing the stripped He core. We present a time-dependent height-integrated model for the long-term evolution of post-CE circumbinary disks (CBDs), accounting for mass and angular momentum exchange with the binary, irradiation heating by the He core, and photoevaporation wind mass loss. A large fraction of the CBD’s mass is accreted prior to its outwards viscous spreading and wind dispersal on a timescale of ∼104–105yr, driving significant orbital migration, even for disks containing ∼10% of the original envelope mass. Insofar that the CBD lifetime is comparable to the thermal (and, potentially, nuclear) timescale of the He core, over which a second mass-transfer episode onto the companion can occur, the presence of the CBD could impact the stability of this key phase. Disruption of the core by the BH/NS would result in a jetted energetic explosion into the dense gaseous CBD (≲1015cm) and its wind (≳1016cm), consistent with the environments of luminous fast blue optical transients like AT2018cow. Evolved He cores that undergo core collapse still embedded in their CBD could generate Type Ibn/Icn supernovae. Thousands of dusty wind-shrouded massive-star CBDs may be detectable as extragalactic luminous infrared sources with the Roman Space Telescope; synchrotron radio nebulae powered by the CBD-fed BH/NS may accompany these systems.

     
    more » « less
  5. Abstract Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave sources. In the “classical” isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is “rejuvenated.” This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼42%–96% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, binaries experiencing first stable mass transfer may more easily survive subsequent CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended “blue loops,” which may have observational consequences for low-metallicity stellar populations and asteroseismology. 
    more » « less