skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tangram: Integrated Control of Heterogeneous Computers
Resource control in heterogeneous computers built with subsystems from different vendors is challenging. There is a tension between the need to quickly generate local decisions in each subsystem and the desire to coordinate the different subsystems for global optimization. In practice, global coordination among subsystems is considered hard, and current commercial systems use centralized controllers. The result is high response time and high design cost due to lack of modularity. To control emerging heterogeneous computers effectively, we propose a new control framework called Tangram that is fast, glob- ally coordinated, and modular. Tangram introduces a new formal controller that combines multiple engines for optimization and safety, and has a standard interface. Building the controller for a subsystem requires knowing only about that subsystem. As a het- erogeneous computer is assembled, the controllers in the different subsystems are connected hierarchically, exchanging standard co- ordination signals. To demonstrate Tangram, we prototype it in a heterogeneous server that we assemble using components from multiple vendors. Compared to state-of-the-art control, Tangram re- duces, on average, the execution time of heterogeneous applications by 31% and their energy-delay product by 39%.  more » « less
Award ID(s):
1763658
PAR ID:
10164052
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Symposium on Microarchitecture
Volume:
1
Issue:
1
Page Range / eLocation ID:
384 to 398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method. 
    more » « less
  2. null (Ed.)
    We consider the decentralized control of a discretetime, linear system subject to exogenous disturbances and polyhedral constraints on the state and input trajectories. The underlying system is composed of a finite collection of dynamically coupled subsystems, where each subsystem is assumed to have a dedicated local controller. The decentralization of information is expressed according to sparsity constraints on the state measurements that each local controller has access to. In this context, we investigate the design of decentralized controllers that are affinely parameterized in their measurement history. For problems with partially nested information structures, the optimization over such policy spaces is known to be convex. Convexity is not, however, guaranteed under more general (nonclassical) information structures in which the information available to one local controller can be affected by control actions that it cannot access or reconstruct. With the aim of alleviating the nonconvexity that arises in such problems, we propose an approach to decentralized control design where the information-coupling states are effectively treated as disturbances whose trajectories are constrained to take values in ellipsoidal contract sets whose location, scale, and orientation are jointly optimized with the underlying affine decentralized control policy. We establish a natural structural condition on the space of allowable contracts that facilitates the joint optimization over the control policy and the contract set via semidefinite programming. 
    more » « less
  3. We will present a new general framework for robust and adaptive control that allows for distributed and scalable learning and control of large systems of interconnected linear subsystems. The control method is demonstrated for a linear time-invariant system with bounded parameter uncertainties, disturbances and noise. The presented scheme continuously collects measurements to reduce the uncertainty about the system parameters and adapts dynamic robust controllers online in a stable and performance-improving way. A key enabler for our approach is choosing a time-varying dynamic controller implementation, inspired by recent work on System Level Synthesis [1]. We leverage a new robustness result for this implementation to propose a general robust adaptive control algorithm. In particular, the algorithm allows us to impose communication and delay constraints on the controller implementation and is formulated as a sequence of robust optimization problems that can be solved in a distributed manner. The proposed control methodology performs particularly well when the interconnection between systems is sparse and the dynamics of local regions of subsystems depend only on a small number of parameters. As we will show on a five-dimensional exemplary chain-system, the algorithm can utilize system structure to efficiently learn and control the entire system while respecting communication and implementation constraints. Moreover, although current theoretical results require the assumption of small initial uncertainties to guarantee robustness, we will present simulations that show good closed-loop performance even in the case of large uncertainties, which suggests that this assumption is not critical for the presented technique and future work will focus on providing less conservative guarantees. 
    more » « less
  4. This paper provides a methodology to study the PHY layer vulnerability of wireless protocols in hostile radio environments. Our approach is based on testing the vulnerabilities of a system by analyzing the individual subsystems. By targeting an individual subsystem or a combination of subsystems at a time, we can infer the weakest part and revise it to improve the overall system performance. We apply our methodology to 4G LTE downlink by considering each control channel as a subsystem. We also develop open-source software enabling research and education using software-defined radios. We present experimental results with open-source LTE systems and shows how the different subsystems behave under targeted interference. The analysis for the LTE downlink shows that the synchronization signals (PSS/SSS) are very resilient to interference, whereas the downlink pilots or Cell-Specific Reference signals (CRS) are the most susceptible to a synchronized protocol-aware interferer. We also analyze the severity of control channel attacks for different LTE configurations. Our methodology and tools allow rapid evaluation of the PHY layer reliability in harsh signaling environments, which is an asset to improve current standards and develop new and robust wireless protocols. 
    more » « less
  5. Dang, Thao; Stolz, Volker (Ed.)
    We present Barrier-based Simplex (Bb-Simplex), a new, provably correct design for runtime assurance of continuous dynamical systems. Bb-Simplex is centered around the Simplex Control Architecture, which consists of a high-performance advanced controller which is not guaranteed to maintain safety of the plant, a verified-safe baseline controller, and a decision module that switches control of the plant between the two controllers to ensure safety without sacrificing performance. In Bb-Simplex, Barrier certificates are used to prove that the baseline controller ensures safety. Furthermore, Bb-Simplex features a new automated method for deriving, from the barrier certificate, the conditions for switching between the controllers. Our method is based on the Taylor expansion of the barrier certificate and yields computationally inexpensive switching conditions. We consider a significant application of Bb-Simplex to a microgrid featuring an advanced controller in the form of a neural network trained using reinforcement learning. The microgrid is modeled in RTDS, an industry-standard high-fidelity, real-time power systems simulator. Our results demonstrate that Bb-Simplex can automatically derive switching conditions for complex systems, the switching conditions are not overly conservative, and Bb-Simplex ensures safety even in the presence of adversarial attacks on the neural controller. 
    more » « less