Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, such as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport.
more »
« less
Determination of effective parameters of fishnet metamaterials with vortex based interferometry
Metamaterials are artificially engineered structures that have unique properties not usually found in natural materials, such as negative refractive index. Conventional interferometry or ellipsometry is generally used for characterizing the optical properties of metamaterials. Here, we report an alternative optical vortex based interferometric approach for the characterization of the effective parameters of optical metamaterials by directly measuring the transmission and reflection phase shifts from metamaterials according to the rotation of vortex spiral interference pattern. The fishnet metamaterials possessing positive, zero and negative refractive indices are characterized with the vortex based interferometry to precisely determine the complex values of effective permittivity, permeability, and refractive index. Our results will pave the way for the advancement of new spectroscopic and interferometric techniques to characterize optical metamaterials, metasurfaces, and nanostructured thin films in general.
more »
« less
- PAR ID:
- 10164370
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 14
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 20051
- Size(s):
- Article No. 20051
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metamaterials are complex structured mixed-material systems with tailored physical properties that have found applications in a variety of optical and electronic technologies. New methods for homogenizing the optical properties of metamaterials are of increasing importance, both to study their exotic properties and because the simulation of these complex structures is computationally expensive. We propose a method to extract a homogeneous refractive index and wave impedance for inhomogeneous materials. We examine effective medium models, where inhomogeneities are subwavelength, and equivalent models where features are larger. Homogenization is only physically justified in the former; however, it is still useful in the latter if only the reflection, transmission, and absorption are of interest. We introduce a resolution of the branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of the complex logarithm beginning with the minimum absolute mean derivative and then enforcing continuity, and also determine an effective thickness. We demonstrate the proposed method on patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may not be. This work illuminates the difference between the two types of models, allowing for better analysis and interpretation of the optical properties of complex metamaterials.more » « less
-
Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit. This paper presents the design of a metamaterial lens and its use in far-field microwave imaging for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation and numerical studies of the metamaterial lens design are presented followed by experimental demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne receiver-based system is used in conjunction with the metamaterial lens to develop a far-field microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of the defect with a separation of 0.23λ was resolvable using the proposed system.more » « less
-
We demonstrate imaging of individual modes in a femtosecond laser written multimode waveguide by spatial-heterodyne interferometry and decomposition in data post-processing. Despite the spatial and temporal overlap between multiple waveguide modes, we show the extraction of amplitude for each individual mode and their corresponding temporal dynamics. The mode imaging scheme is effective with the presence of intermodal interference and can be prospective for sensing of ultrafast phase and refractive index fluctuations. We also reconstruct the two-dimensional transverse refractive index map of the multimode waveguide leveraging all the imaged modes and substantiate the reconstructed index map by simulation.more » « less
-
Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide‐range transparency window. It is known that a higher concentration of Si in silicon‐rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade‐off, four‐wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma‐enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C‐band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous‐wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two‐photon absorption. Finally, the third‐order susceptibility and the nonlinear refractive index are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as and are estimated in a waveguide with an SRN refractive index of 3.2.more » « less
An official website of the United States government
