skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Generalized Sparse Symmetric Tensor-on-Vector Regression
Motivated by brain connectome datasets acquired using diffusion weighted magnetic resonance imaging (DWI), this article proposes a novel generalized Bayesian linear modeling framework with a symmetric tensor response and scalar predictors. The symmetric tensor coefficients corresponding to the scalar predictors are embedded with two features: low-rankness and group sparsity within the low-rank structure. Besides offering computational efficiency and parsimony, these two features enable identification of important “tensor nodes” and “tensor cells” significantly associated with the predictors, with characterization of uncertainty. The proposed framework is empirically investigated under various simulation settings and with a real brain connectome dataset. Theoretically, we establish that the posterior predictive density from the proposed model is “close” to the true data generating density, the closeness being measured by the Hellinger distance between these two densities, which scales at a rate very close to the finite dimensional optimal rate, depending on how the number of tensor nodes grow with the sample size.  more » « less
Award ID(s):
1854662
PAR ID:
10164736
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Technometrics
ISSN:
0040-1706
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lesot, M. (Ed.)
    This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors. 
    more » « less
  2. This article seeks to investigate the impact of aging on functional connectivity across different cognitive control scenarios, particularly emphasizing the identification of brain regions significantly associated with early aging. By conceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate inference and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant brain asymmetries associated with early aging. 
    more » « less
  3. Summary We propose and investigate an additive regression model for symmetric positive-definite matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions, but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established, and numerical studies show that the proposed model enjoys good numerical performance, and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data. 
    more » « less
  4. We consider the problem of tensor decomposition with multiple side information available as interactive features. Such problems are common in neuroimaging, network modeling, and spatial-temporal analysis. We develop a new family of exponential tensor decomposition models and establish the theoretical accuracy guarantees. An efficient alternating optimization algorithm is further developed. Unlike earlier methods, our proposal is able to handle a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and identify the key brain connectivity patterns associated with available features. Our method will help the practitioners efficiently analyze tensor datasets in various areas. Toward this end, all data and code are available at https://CRAN.R-project.org/ package=tensorregress. 
    more » « less
  5. We consider the problem of tensor decomposition with multiple side information available as interactive features. Such problems are common in neuroimaging, network modeling, and spatial-temporal analysis. We develop a new family of exponential tensor decomposition models and establish the theoretical accuracy guarantees. An efficient alternating optimization algorithm is further developed. Unlike earlier methods, our proposal is able to handle a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and identify the key brain connectivity patterns associated with available features. Our method will help the practitioners efficiently analyze tensor datasets in various areas. Toward this end, all data and code are available at https://CRAN.R-project.org/ package=tensorregress. 
    more » « less