skip to main content

Title: A dry lift-off method for patterning perovskites
In this paper, we demonstrate a new method to pattern perovskites using a dry lift-off process. By utilizing parylene-C as a sacrificial layer, patterns with <12 um features and multi-color patterns can be achieved.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electrooptics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pattern-based methods have been successful in information extraction and NLP research. Previous approaches learn the quality of a textual pattern as relatedness to a certain task based on statistics of its individual content (e.g., length, frequency) and hundreds of carefully-annotated labels. However, patterns of good contentquality may generate heavily conflicting information due to the big gap between relatedness and correctness. Evaluating the correctness of information is critical in (entity, attribute, value)-tuple extraction. In thiswork,we propose a novel method, called TruePIE, that finds reliable patterns which can extract not only related but also correct information. TruePIE adopts the self-training framework and repeats the training-predicting-extracting process to gradually discover more and more reliable patterns. To better represent the textual patterns, pattern embeddings are formulated so that patterns with similar semantic meanings are embedded closely to each other. The embeddings jointly consider the local pattern information and the distributional information of the extractions. To conquer the challenge of lacking supervision on patterns’ reliability, TruePIE can automatically generate high quality training patterns based on a couple of seed patterns by applying the arity-constraints to distinguish highly reliable patterns (i.e., positive patterns) and highly unreliable patterns (i.e., negative patterns). Experiments on a huge news dataset (over 25GB) demonstrate that the proposed TruePIE significantly outperforms baseline methods on each of the three tasks: reliable tuple extraction, reliable pattern extraction, and negative pattern extraction. 
    more » « less
  2. Recent studies have shown that students follow stable behavioral patterns while learning in online educational systems. These behavioral patterns can further be used to group the students into different clusters. However, as these clusters include both high- and low-performance students, the relation between the behavioral patterns and student performance is yet to be clarified. In this work, we study the relationship between students’ learning behaviors and their performance, in a self-organized online learning system that allows them to freely practice with various problems and worked examples. We represent each student’s behavior as a vector of highsupport sequential micro-patterns. Then, we discover both the prevalent behavioral patterns in each group and the shared patterns across groups using discriminative non-negative matrix factorization. Our experiments show that we can successfully detect such common and specific patterns in students’ behavior that can be further interpreted into student learning behavior trait patterns and performance patterns. 
    more » « less
  3. Mining textual patterns in news, tweets, papers, and many other kinds of text corpora has been an active theme in text mining and NLP research. Previous studies adopt a dependency parsing-based pattern discovery approach. However, the parsing results lose rich context around entities in the patterns, and the process is costly for a corpus of large scale. In this study, we propose a novel typed textual pattern structure, called meta pattern, which is extended to a frequent, informative, and precise subsequence pattern in certain context. We propose an efficient framework, called MetaPAD, which discovers meta patterns from massive corpora with three techniques: (1) it develops a context-aware segmentation method to carefully determine the boundaries of patterns with a learnt pattern quality assessment function, which avoids costly dependency parsing and generates high-quality patterns; (2) it identifies and groups synonymous meta patterns from multiple facets—their types, contexts, and extractions; and (3) it examines type distributions of entities in the instances extracted by each group of patterns, and looks for appropriate type levels to make discovered patterns precise. Experiments demonstrate that our proposed framework discovers high-quality typed textual patterns efficiently from different genres of massive corpora and facilitates information extraction. 
    more » « less
  4. Abstract

    Fish display a versatile array of swimming patterns, and frequently demonstrate the ability to switch between these patterns altering kinematics as necessary. Many hard and soft robotic systems have sought to understand a variety of aspects pertaining to undulatory swimming, but most have been built to focus solely on a subset of those swimming patterns. We have expanded upon a previous soft robotic model, the pneufish, so that it can now simulate a variety of swimming patterns, much like a real fish. We explore the performance space available for this longer soft robotic model, which we call the quad-pneufish, with particular attention to the effects on lateral forces and z-torques produced during locomotion. We show that the quad-pneufish is capable of achieving a variety of midline patterns—including more realistic, fish-like patterns—and introducing a slight amount of co-activation between the left and right sides maintains forward thrust while decreasing lateral forces, indicating an increase in swimming efficiency. Robotic systems that are capable of producing an array of swimming movement patterns hold promise as experimental platforms for studying the diversity of fish locomotor patterns.

    more » « less
  5. The emergence of database-as-a-service platforms has made deploying database applications easier than before. Now, developers can quickly create scalable applications. However, designing performant, maintainable, and accurate applications is challenging. Developers may unknowingly introduce anti-patterns in the application's SQL statements. These anti-patterns are design decisions that are intended to solve a problem, but often lead to other problems by violating fundamental design principles. In this paper, we present SQLCheck, a holistic toolchain for automatically finding and fixing anti-patterns in database applications. We introduce techniques for automatically (1) detecting anti-patterns with high precision and recall, (2) ranking the anti-patterns based on their impact on performance, maintainability, and accuracy of applications, and (3) suggesting alternative queries and changes to the database design to fix these anti-patterns. We demonstrate the prevalence of these anti-patterns in a large collection of queries and databases collected from open-source repositories. We introduce an anti-pattern detection algorithm that augments query analysis with data analysis. We present a ranking model for characterizing the impact of frequently occurring anti-patterns. We discuss how SQLCheck suggests fixes for high-impact anti-patterns using rule-based query refactoring techniques. Our experiments demonstrate that SQLCheck enables developers to create more performant, maintainable, and accurate applications. 
    more » « less