skip to main content


Title: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
Abstract. Evapotranspiration (ET) is critical in linking global water, carbon andenergy cycles. However, direct measurement of global terrestrial ET is notfeasible. Here, we first reviewed the basic theory and state-of-the-artapproaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and land surfacemodels (LSMs). We then utilized 4 remote-sensing-based physical models,2 machine-learning algorithms and 14 LSMs to analyze the spatial andtemporal variations in global terrestrial ET. The results showed that theensemble means of annual global terrestrial ET estimated by these threecategories of approaches agreed well, with values ranging from 589.6 mm yr−1(6.56×104 km3 yr−1) to 617.1 mm yr−1(6.87×104 km3 yr−1). For the period from 1982 to 2011, boththe ensembles of remote-sensing-based physical models and machine-learningalgorithms suggested increasing trends in global terrestrial ET (0.62 mm yr−2 with a significance level of p<0.05 and 0.38 mm yr−2 with a significance level of p<0.05,respectively). In contrast, the ensemble mean of the LSMs showed nostatistically significant change (0.23 mm yr−2, p>0.05),although many of the individual LSMs reproduced an increasing trend.Nevertheless, all 20 models used in this study showed that anthropogenicEarth greening had a positive role in increasing terrestrial ET. Theconcurrent small interannual variability, i.e., relative stability, found inall estimates of global terrestrial ET, suggests that a potentialplanetary boundary exists in regulating global terrestrial ET, with the value of this boundary beingaround 600 mm yr−1. Uncertainties among approaches were identified inspecific regions, particularly in the Amazon Basin and arid/semiaridregions. Improvements in parameterizing water stress and canopy dynamics,the utilization of new available satellite retrievals and deep-learning methods,and model–data fusion will advance our predictive understanding of globalterrestrial ET.  more » « less
Award ID(s):
1903722 1243232
NSF-PAR ID:
10167126
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
24
Issue:
3
ISSN:
1607-7938
Page Range / eLocation ID:
1485 to 1509
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Coupled physical–biogeochemical models can fill thespatial and temporal gap in ocean carbon observations. Challenges ofapplying a coupled physical–biogeochemical model in the regional oceaninclude the reasonable prescription of carbon model boundary conditions,lack of in situ observations, and the oversimplification of certainbiogeochemical processes. In this study, we applied a coupledphysical–biogeochemical model (Regional Ocean Modelling System, ROMS) to theGulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution(5 km, 1/22∘) hindcast covering the period of 2000 to 2019. Thebiogeochemical model incorporated the dynamics of dissolved organic carbon(DOC) pools and the formation and dissolution of carbonate minerals. Thebiogeochemical boundaries were interpolated from NCAR's CESM2-WACCM-FV2solution after evaluating the performance of 17 GCMs in the GoM waters. Modeloutputs included carbon system variables of wide interest, such aspCO2, pH, aragonite saturation state (ΩArag), calcitesaturation state (ΩCalc), CO2 air–sea flux, and carbon burialrate. The model's robustness is evaluated via extensive model–datacomparison against buoys, remote-sensing-based machine learning (ML)products, and ship-based measurements. A reassessment of air–sea CO2flux with previous modeling and observational studies gives us confidencethat our model provides a robust and updated CO2 flux estimation, andNGoM is a stronger carbon sink than previously reported. Model resultsreveal that the GoM water has been experiencing a ∼ 0.0016 yr−1 decrease in surface pH over the past 2 decades, accompanied by a∼ 1.66 µatm yr−1 increase in sea surfacepCO2. The air–sea CO2 exchange estimation confirms in accordance with severalprevious models and ocean surface pCO2 observations that theriver-dominated northern GoM (NGoM) is a substantial carbon sink, and theopen GoM is a carbon source during summer and a carbon sink for the rest ofthe year. Sensitivity experiments are conducted to evaluate the impacts ofriver inputs and the global ocean via model boundaries. The NGoM carbonsystem is directly modified by the enormous carbon inputs (∼ 15.5 Tg C yr−1 DIC and ∼ 2.3 Tg C yr−1 DOC) from theMississippi–Atchafalaya River System (MARS). Additionally,nutrient-stimulated biological activities create a ∼ 105 timeshigher particulate organic matter burial rate in NGoM sediment than in thecase without river-delivered nutrients. The carbon system condition of theopen ocean is driven by inputs from the Caribbean Sea via the Yucatan Channeland is affected more by thermal effects than biological factors. 
    more » « less
  2. Abstract

    China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001–2018, GPP in China increased significantly at a rate of 49.1–53.1 TgC/yr2, and the climatic and anthropogenic contributions to GPP gains were comparable (48%–56% and 44%–52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming‐pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4–24.9 TgC/yr2) during 2001–2018 was highly attributed to human activities (71%–81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001–2010 were generally offset by the climate‐induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration.

     
    more » « less
  3. Abstract. The quantity and quality of river discharge in Arctic regions is influenced by many processes including climate, watershed attributes and, increasingly, hydrological cycle intensification and permafrost thaw. We used a hydrological model to quantify baseline conditions and investigate the changing character of hydrological elements for Arctic watersheds between Utqiagvik (formerly known as Barrow)) and just west of Mackenzie River over the period 1981–2010. A synthesis of measurements and model simulations shows that the region exports 31.9 km3 yr−1 of freshwater via river discharge, with 55.5 % (17.7 km3 yr−1) coming collectively from the Colville, Kuparuk, and Sagavanirktok rivers. The simulations point to significant (p<0.05) increases (134 %–212 % of average) in cold season discharge (CSD) for several large North Slope rivers including the Colville and Kuparuk, and for the region as a whole. A significant increase in the proportion of subsurface runoff to total runoff is noted for the region and for 24 of the 42 study basins, with the change most prevalent across the northern foothills of the Brooks Range. Relatively large increases in simulated active-layer thickness (ALT) suggest a physical connection between warming climate, permafrost degradation, and increasing subsurface flow to streams and rivers. A decline in terrestrial water storage (TWS) is attributed to losses in soil ice that outweigh gains in soil liquid water storage. Over the 30-year period, the timing of peak spring (freshet) discharge shifts earlier by 4.5 d, though the time trend is only marginally (p=0.1) significant. These changing characteristics of Arctic rivers have important implications for water, carbon, and nutrient cycling in coastal environments. 
    more » « less
  4. Abstract

    In land surface models (LSMs), the hydraulic properties of the subsurface are commonly estimated according to the texture of soils at the Earth's surface. This approach ignores macropores, fracture flow, heterogeneity, and the effects of variable distribution of water in the subsurface oneffectivewatershed‐scale hydraulic variables. Using hydrograph recession analysis, we empirically constrain estimates of watershed‐scale effective hydraulic conductivities (K) and effective drainable aquifer storages (S) of all reference watersheds in the conterminous United States for which sufficient streamflow data are available (n = 1,561). Then, we use machine learning methods to model these properties across the entire conterminous United States. Model validation results in high confidence for estimates of log(K) (r2 > 0.89; 1% < bias < 9%) and reasonable confidence forS(r2 > 0.83; −70% < bias < −18%). Our estimates of effectiveKare, on average, two orders of magnitude higher than comparable soil‐texture‐based estimates of averageK, confirming the importance of soil structure and preferential flow pathways at the watershed scale. Our estimates of effectiveScompare favorably with recent global estimates of mobile groundwater and are spatially heterogeneous (5–3,355 mm). Because estimates ofSare much lower than the global maximums generally used in LSMs (e.g., 5,000 mm in Noah‐MP), they may serve both to limit model spin‐up time and to constrain model parameters to more realistic values. These results represent the first attempt to constrain estimates of watershed‐scale effective hydraulic variables that are necessary for the implementation of LSMs for the entire conterminous United States.

     
    more » « less
  5. Deltaic islands are distinct hydro-environmental zones with global significance in food security, biodiversity conservation, and fishery industry. These islands are the fundamental building blocks of many river deltas. However, deltaic islands are facing severe challenges due to intensive anthropogenic activities, sea level rise, and climate change. In this study, dynamic changes of deltaic islands in Wax Lake Delta (WLD) and Atchafalaya Delta (AD), part of the Atchafalaya River Delta Complex (ARDC) in Louisiana, USA, were quantified based on remote sensing images from 1991 to 2019 through a machine learning method. Results indicate a significant increase in deltaic islands area for the whole ARDC at a rate of 1.29 km2/yr, with local expansion rates of 0.60 km2/yr for WLD and 0.69 km2/yr for AD. All three parts of the WLD naturally prograded seaward, with the western part (WP) and central part (CP) expanding southwestward to the sea, while the eastern part (EP) prograding southeastwards. Differently from WLD, the three parts of AD irregularly expanded seaward under the impacts of anthropogenic activities. The WP and CP of the AD expanded respectively northwestwards and southwestwards, while the EP remained stable. Different drivers dominate the growth of deltaic islands in the WLD and AD. Specifically, fluvial suspended sediment discharge and peak flow events were responsible for the shift in the spatial evolution of WLD, while dredging and sediment disposal contributed to the expansion of AD. Tropical storms with different intensity and landing locations caused short-term deltaic island erosion or expansion. Tropical storms mainly generated erosion on the deltaic islands of the WLD, while causing transient erosion or siltation on the deltaic islands of the AD. In addition, high-intensity hurricanes that made landfall east of the deltas caused more erosion in the AD. Finally, sea level rise, at the current rate of 8.17 mm/yr, will not pose a threat to the deltaic island of WLD, while the eastern part of AD may be at risk of drowning. This study recognizes the complexity of factors influencing the growth of deltaic islands, suggesting that quantitative studies on the deltaic island extent are of critical for the restoration and sustainable management of the Mississippi River Delta and other deltas around the world. 
    more » « less