skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CAPSULe: Cross-FPGA Covert-Channel Attacks through Power Supply Unit Leakage
Field-Programmable Gate Arrays (FPGAs) are ver-satile, reconfigurable integrated circuits that can be used ashardware accelerators to process highly-sensitive data. Leakingthis data and associated cryptographic keys, however, can un-dermine a system’s security. To prevent potentially unintentionalinteractions that could break separation of privilege betweendifferent data center tenants, FPGAs in cloud environments arecurrently dedicated on a per-user basis. Nevertheless, while theFPGAs themselves are not shared among different users, otherparts of the data center infrastructure are. This paper specificallyshows for the first time that powering FPGAs, CPUs, and GPUsthrough the same power supply unit (PSU) can be exploitedin FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covertchannels between independent boards. These covert channelscan operate remotely, without the need for physical access to,or modifications of, the boards. To demonstrate the attacks, thispaper uses a novel combination of “sensing” and “stressing” ringoscillators as receivers on the sink FPGA. Further, ring oscillatorsare used as transmitters on the source FPGA. The transmittingand receiving circuits are used to determine the presence of theleakage on off-the-shelf Xilinx boards containing Artix 7 andKintex 7 FPGA chips. Experiments are conducted with PSUs bytwo vendors, as well as CPUs and GPUs of different generations.Moreover, different sizes and types of ring oscillators are alsotested. In addition, this work discusses potential countermeasuresto mitigate the impact of the cross-board leakage. The results ofthis paper highlight the dangers of shared power supply unitsin local and cloud FPGAs, and therefore a fundamental need tore-think FPGA security for shared infrastructures.  more » « less
Award ID(s):
1901901
PAR ID:
10167507
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Symposium on Security and Privacy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks. 
    more » « less
  2. null (Ed.)
    Cloud and data center applications increasingly leverage FPGAs because of their performance/watt benefits and flexibility advantages over traditional processing cores such as CPUs and GPUs. As the rising demand for hardware acceleration gradually leads to FPGA multi-tenancy in the cloud, there are rising concerns about the security challenges posed by FPGA virtualization. Exposing space-shared FPGAs to multiple cloud tenants may compromise the confidentiality, integrity, and availability of FPGA-accelerated applications. In this work, we present a hardware/software architecture for domain isolation in FPGA-accelerated clouds and data centers with a focus on software-based attacks aiming at unauthorized access and information leakage. Our proposed architecture implements Mandatory Access Control security policies from software down to the hardware accelerators on FPGA. Our experiments demonstrate that the proposed architecture protects against such attacks with minimal area and communication overhead. 
    more » « less
  3. With the growing demand for enhanced performance and scalability in cloud applications and systems, data center architectures are evolving to incorporate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. Unlike traditional processing platforms like CPUs and GPUs, FPGAs offer the unique ability for hardware reconfiguration at run-time, enabling improved and tailored performance, flexibility, and acceleration. FPGAs excel at executing large-scale search optimization, acceleration, and signal processing tasks while consuming low power and minimizing latency. Major public cloud providers, such as Amazon, Huawei, Microsoft, Alibaba, and others, have already begun integrating FPGA-based cloud acceleration services into their offerings. Although FPGAs in cloud applications facilitate customized hardware acceleration, they also introduce new security challenges that demand attention. Granting cloud users the capability to reconfigure hardware designs after deployment may create potential vulnerabilities for malicious users, thereby jeopardizing entire cloud platforms. In particular, multi-tenant FPGA services, where a single FPGA is divided spatially among multiple users, are highly vulnerable to such attacks. This paper examines the security concerns associated with multi-tenant cloud FPGAs, provides a comprehensive overview of the related security, privacy and trust issues, and discusses forthcoming challenges in this evolving field of study. 
    more » « less
  4. Because FPGAs outperform traditional processing cores like CPUs and GPUs in terms of performance per watt and flexibility, they are being used more and more in cloud and data center applications. There are growing worries about the security risks posed by multi-tenant sharing as the demand for hardware acceleration increases and gradually gives way to FPGA multi-tenancy in the cloud. The confidentiality, integrity, and availability of FPGA-accelerated applications may be compromised if space-shared FPGAs are made available to many cloud tenants. We propose a root of trust-based trusted execution mechanism called TrustToken to prevent harmful software-level attackers from getting unauthorized access and jeopardizing security. With safe key creation and truly random sources, TrustToken creates a security block that serves as the foundation of trust-based IP security. By offering crucial security characteristics, such as secure, isolated execution and trusted user interaction, TrustToken only permits trustworthy connection between the non-trusted third-party IP and the rest of the SoC environment. The suggested approach does this by connecting the third-party IP interface to the TrustToken Controller and running run-time checks on the correctness of the IP authorization(Token) signals. With an emphasis on software-based assaults targeting unauthorized access and information leakage, we offer a noble hardware/software architecture for trusted execution in FPGA-accelerated clouds and data centers. 
    more » « less
  5. The availability of FPGAs in cloud data centers offers rapid, on-demand access to reconfigurable hardware compute resources that users can adapt to their own needs. However, the low-level access to the FPGA hardware and associated resources such as the PCIe bus, SSD drives, or DRAM modules also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between FPGA-accelerated virtual machines by modulating the PCIe bus usage. This channel further works with different operating systems, and achieves bandwidths reaching 20 kbps with 99% accuracy. This is the first cross-FPGA covert channel demonstrated on commercial clouds, and has a bandwidth which is over 2000 × larger than prior voltage- or temperature-based cross-board attacks. This paper further demonstrates that the PCIe receivers are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus, including detecting when co-located VMs are initialized, even prior to their associated FPGAs being used. Moreover, the proposed mechanism can be used to infer the activities of other users, or even slow down the programming of the co-located FPGAs as well as other data transfers between the host and the FPGA. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to network traffic, contention due to shared NVMe SSDs, as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected. 
    more » « less