skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The frontier of simulation-based inference
Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly developing field of simulation-based inference and identify the forces giving additional momentum to the field. Finally, we describe how the frontier is expanding so that a broad audience can appreciate the profound influence these developments may have on science.  more » « less
Award ID(s):
1836650 1841471 1450310 1806738
PAR ID:
10167904
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
201912789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this position paper, we describe research on knowledge graph-empowered materials science prediction and discovery. The research consists of several key components including ontology mapping, materials data annotation, and information extraction from unstructured scholarly articles. We argue that although big data generated by simulations and experiments have motivated and accelerated the data-driven science, the distribution and heterogeneity of materials science-related big data hinders major advancements in the field. Knowledge graphs, as semantic hubs, integrate disparate data and provide a feasible solution to addressing this challenge. We design a knowledge-graph based approach for data discovery, extraction, and integration in materials science. 
    more » « less
  2. Developing methods of automated inference that are able to provide users with compelling human-readable justifications for why the answer to a question is correct is critical for domains such as science and medicine, where user trust and detecting costly errors are limiting factors to adoption. One of the central barriers to training question answering models on explainable inference tasks is the lack of gold explanations to serve as training data. In this paper we present a corpus of explanations for standardized science exams, a recent challenge task for question answering. We manually construct a corpus of detailed explanations for nearly all publicly available standardized elementary science question (approximately 1,680 3 rd through 5 th grade questions) and represent these as “explanation graphs” - sets of lexically overlapping sentences that describe how to arrive at the correct answer to a question through a combination of domain and world knowledge. We also provide an explanation-centered tablestore, a collection of semi-structured tables that contain the knowledge to construct these elementary science explanations. Together, these two knowledge resources map out a substantial portion of the knowledge required for answering and explaining elementary science exams, and provide both structured and free-text training data for the explainable inference task. 
    more » « less
  3. ABSTRACT Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel observational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discussing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key challenges; the application of causal inference in experimental and quasi‐experimental study designs; appropriate interpretation of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements and trade‐offs between internal and external validity posed by different designs. We highlight that these designs generally prioritise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate causal inference with synthesis science and meta‐analysis and expand the spatiotemporal scales at which causal inference is possible. We advocate for ecology as a field to collectively define best practices for causal inference. 
    more » « less
  4. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
    We present progress on a conceptual design for a new Keck multi-conjugate adaptive optics system capable of visible light correction with a near-diffraction-limited spatial resolution. The KOLA (Keck Optical LGS AO) system will utilize a planned adaptive secondary mirror (ASM), 2 additional high-altitude deformable mirrors (DMs), and ≳ 8 laser guide stars (LGS) to sense and correct atmospheric turbulence. The field of regard for selecting guide stars will be 2’ and the corrected science field of view will be 60”. We describe science cases, system requirements, and performance simulations for the system performed with error budget spreadsheet tools and MAOS physical optics simulations. We will also present results from trade studies for the actuator count on the ASM. KOLA will feed a new optical imager and IFU spectrograph in addition to the planned Liger optical + infrared (λ > 850 nm) imager and IFU spectrograph. Performance simulations show KOLA will deliver a Strehl of 12% at g’, 21% at r’, 53% at Y, and 87% at K bands on axis with nearly uniform image quality over a 40”×40” field of view in the optical and over 60”×60” beyond 1 μm. Ultimately, the system will deliver spatial resolutions superior to HST and JWST (∼17 mas at r’-band) and comparable to the planned first-generation infrared AO systems for the ELTs. 
    more » « less
  5. Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology and epidemiology. Analysis of the model dynamics can be challenging due to their inherent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth–death–migration model commonly used to explore cell biology experiments and a susceptible–infected–recovered model of infectious disease spread. 
    more » « less