skip to main content


Title: Trajectory-aware Lowest-cost Path Selection: A Summary of Results
The trajectory-aware lowest-cost path selection problem aims to find the lowest-cost path using trajectory data. Trajectory data is valuable since it carries information about travel cost along paths, and also reflects travelers' routing preference. Path-centric travel cost estimation models using trajectory data grows popular recently, which considers the auto-correlation of the energy consumption on different segments of a path. However, path-centric models are more computationally expensive than edge-centric models. The main challenge of this problem is that the travel cost of every candidate path explored during the process of searching for the lowest-cost path need to be estimated, resulting in high computational cost. The current path selection algorithms that use path-centric cost estimation models still follow the pattern of "path + edge" when exploring candidate paths, which may result in redundant computation. We introduce a trajectory-aware graph model in which each node is a maximal trajectory-aware path. Two nodes in the trajectory-aware graph are linked by an edge if their union forms a trajectory-union path. We then propose a path selection algorithm to find a path in the proposed trajectory-aware graph which corresponds to the lowest-cost path in the input spatial network. We prove theoretically the proposed algorithm is correct and complete. Moreover, we prove theoretically that the proposed path selection algorithm cost much less computational time than the algorithm used in the related work, and validate it through experiments using real-world trajectory data.  more » « less
Award ID(s):
1901099
NSF-PAR ID:
10170283
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SSTD '19: Proceedings of the 16th International Symposium on Spatial and Temporal Databases
Page Range / eLocation ID:
61 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Given a spatial graph, an origin and a destination, and on-board diagnostics (OBD) data, the energy-efficient path selection problem aims to find the path with the least expected energy consumption (EEC). Two main objectives of smart cities are sustainability and prosperity, both of which benefit from reducing the energy consumption of transportation. The challenges of the problem include the dependence of EEC on the physical parameters of vehicles, the autocorrelation of the EEC on segments of paths, the high computational cost of EEC estimation, and potential negative EEC. However, the current cost estimation models for the path selection problem do not consider vehicles’ physical parameters. Moreover, the current path selection algorithms follow the “path + edge” pattern when exploring candidate paths, resulting in redundant computation. Our preliminary work introduced a physics-guided energy consumption model and proposed a maximal-frequented-path-graph shortest-path algorithm using the model. In this work, we propose an informed algorithm using an admissible heuristic and propose an algorithm to handle negative EEC. We analyze the proposed algorithms theoretically and evaluate the proposed algorithms via experiments with real-world and synthetic data. We also conduct two case studies using real-world data and a road test to validate the proposed method. 
    more » « less
  2. We prove the computational intractability of rotating and placing n square tiles into a 1 × n array such that adjacent tiles are compatible—either equal edge colors, as in edge-matching puzzles, or matching tab/pocket shapes, as in jigsaw puzzles. Beyond basic NP-hardness, we prove that it is NP-hard even to approximately maximize the number of placed tiles (allowing blanks), while satisfying the compatibility constraint between nonblank tiles, within a factor of 0.9999999702. (On the other hand, there is an easy (1/2)-approximation.) This is the first (correct) proof of inapproximability for edge-matching and jigsaw puzzles. Along the way, we prove NP-hardness of distinguishing, for a directed graph on n nodes, between having a Hamiltonian path (length n − 1) and having at most 0.999999284 (n − 1) edges that form a vertex-disjoint union of paths. We use this gap hardness and gap-preserving reductions to establish similar gap hardness for 1 × n jigsaw and edge-matching puzzles. 
    more » « less
  3. null (Ed.)
    The Jellyfish network has recently been proposed as an alternative to the fat-tree network for data centers and high-performance computing clusters. Jellyfish uses a random regular graph as its switch-level topology and has shown to be more cost-effective than fat-trees. Effective routing on Jellyfish is challenging. It is known that shortest path routing and equal cost multi-path routing (ECMP) do not work well on Jellyfish. Existing schemes use variations of k-shortest path routing (KSP). In this work, we study two routing components for Jellyfish: path selection that decides the paths to route traffic, and routing mechanisms that decide which path to be used for each packet. We show that the performance of the existing KSP can be significantly improved by incorporating two heuristics, randomization and edge-disjointness. We evaluate a range of routing mechanisms, including traffic oblivious and traffic adaptive schemes, and identify an adaptive routing scheme with noticeably higher performance than others. 
    more » « less
  4. null (Ed.)
    Given a weighted planar bipartite graph G ( A ∪ B , E ) where each edge has an integer edge cost, we give an Õ( n 4/3 log nC ) time algorithm to compute minimum-cost perfect matching; here C is the maximum edge cost in the graph. The previous best-known planarity exploiting algorithm has a running time of O ( n 3/2 log n ) and is achieved by using planar separators (Lipton and Tarjan ’80). Our algorithm is based on the bit-scaling paradigm (Gabow and Tarjan ’89). For each scale, our algorithm first executes O ( n 1/3 ) iterations of Gabow and Tarjan’s algorithm in O ( n 4/3 ) time leaving only O ( n 2/3 ) vertices unmatched. Next, it constructs a compressed residual graph H with O ( n 2/3 ) vertices and O ( n ) edges. This is achieved by using an r -division of the planar graph G with r = n 2/3 . For each partition of the r -division, there is an edge between two vertices of H if and only if they are connected by a directed path inside the partition. Using existing efficient shortest-path data structures, the remaining O ( n 2/3 ) vertices are matched by iteratively computing a minimum-cost augmenting path, each taking Õ( n 2/3 ) time. Augmentation changes the residual graph, so the algorithm updates the compressed representation for each partition affected by the change in Õ( n 2/3 ) time. We bound the total number of affected partitions over all the augmenting paths by O ( n 2/3 log n ). Therefore, the total time taken by the algorithm is Õ( n 4/3 ). 
    more » « less
  5. The eco-toll estimation problem quantifies the expected environmental cost (e.g., energy consumption, exhaust emissions) for a vehicle to travel along a path. This problem is important for societal applications such as eco-routing, which aims to find paths with the lowest exhaust emissions or energy need. The challenges of this problem are threefold: (1) the dependence of a vehicle's eco-toll on its physical parameters; (2) the lack of access to data with eco-toll information; and (3) the influence of contextual information (i.e. the connections of adjacent segments in the path) on the eco-toll of road segments. Prior work on eco-toll estimation has mostly relied on pure data-driven approaches and has high estimation errors given the limited training data. To address these limitations, we propose a novel Eco-toll estimation Physics-informed Neural Network framework (Eco-PiNN) using three novel ideas, namely, (1) a physics-informed decoder that integrates the physical laws governing vehicle dynamics into the network, (2) an attention-based contextual information encoder, and (3) a physics-informed regularization to reduce overfitting. Experiments on real-world heavy-duty truck data show that the proposed method can greatly improve the accuracy of eco-toll estimation compared with state-of-the-art methods. *The full version of the paper can be accessed at https://arxiv.org/abs/2301.05739 
    more » « less