skip to main content


Title: A survey of edge computing-based designs for IoT security
Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues.  more » « less
Award ID(s):
1723596
NSF-PAR ID:
10171766
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Digital communications and networks
Volume:
6
Issue:
2
ISSN:
2352-8648
Page Range / eLocation ID:
195-202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in IoT applications. The increased complexity is demanding designers to consider several critical factors, such as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines. These requirements lead to more complex security concerns. SoC manufacturers outsource some of the intellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual properties can contain malicious implants, which can launch attacks using the resources provided by the on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on securing NoC have considered lightweight encryption, authentication, and other attack detection mechanisms such as denial-of-service and buffer overflows. Unfortunately, these approaches focus on designing statically optimized security solutions. As a result, they are not suitable for many IoT systems with long application life and dynamic requirement changes. There is a critical need to design reconfigurable security architectures that can be dynamically tuned based on changing requirements. In this article, we propose a tier-based reconfigurable security architecture that can adapt to different use-case scenarios. We explore how to design an efficient reconfigurable architecture that can support three popular NoC security mechanisms (encryption, authentication, and denial-of-service attack detection and localization) and implement suitable dynamic reconfiguration techniques. We evaluate our proposed framework by running standard benchmarks enabling different tiers of security and provide a comprehensive analysis of how different levels of security can affect application performance, energy efficiency, and area overhead. 
    more » « less
  2. his work presents a sustainable cybersecurity solution using Physical Unclonable Functions (PUF), Trusted Platform Module (TPM), and Tangle Distributed Ledger Technology (DLT) for sustainable device and data security. Security-by-Design (SbD) or Hardware- Assisted Security (HAS) solutions have gained much prominence due to the requirement of tamper-proof storage for hardwareassisted cryptography solutions. Designing complex security mechanisms can impact their efficiency as IoT applications are more decentralized. In the proposed architecture, we presented a novel TPM-enabled PUF-based security mechanism with effective integration of PUF with TPM. The proposed mechanism is based on the process of sealing the PUF key in the TPM, which cannot be accessed outside the TPM and can only be unsealed by the TPM itself. A specified NV-index is assigned to each IoT node for sealing the PUF key to TPM using the Media Access Control (MAC) address. Access to the TPM's Non-Volatile Random Access Memory (NVRAM) is defined by the TPM's Enhanced Authorization policies as specified by the Trust Computing Group (TCG). The proposed architecture uses Tangle for sustainable data security and storage in decentralized IoT systems through a Masked Authentication Messaging (MAM) scheme for efficient and secure access control to Tangle. We validated the proposed approach through experimental analysis and implementation, which substantiates the potential of the presented PUFchain 4.0 for decentralized IoT-driven security solutions. 
    more » « less
  3. Hardware security creates a hardware-based security foundation for secure and reliable operation of systems and applications used in our modern life. The presence of design for security, security assurance, and general security design life cycle practices in product life cycle of many large semiconductor design and manufacturing companies these days indicates that the importance of hardware security has been very well observed in industry. However, the high cost, time, and effort for building security into designs and assuring their security - due to using many manual processes - is still an important obstacle for economy of secure product development. This paper presents several promising directions for automation of design for security and security assurance practices to reduce the overall time and cost of secure product development. First, we present security verification challenges of SoCs, possible vulnerabilities that could be introduced inadvertently by tools mapping a design model in one level of abstraction to its lower level, and our solution to the problem by automatically mapping security properties from one level to its lower level incorporating techniques for extension and expansion of the properties. Then, we discuss the foundation necessary for further automation of formal security analysis of a design by incorporating threat model and common security vulnerabilities into an intermediate representation of a hardware model to be used to automatically determine if there is a chance for direct or indirect flow of information to compromise confidentiality or integrity of security assets. Finally, we discuss a pre-silicon-based framework for practical and time-and-cost effective power-side channel leakage analysis, root-causing the side-channel leakage by using the automatically generated leakage profile of circuit nodes, providing insight to mitigate the side-channel leakage by addressing the high leakage nodes, and assuring the effectiveness of the mitigation by reprofiling the leakage to prove its acceptable level of elimination. We hope that sharing these efforts and ideas with the security research community can accelerate the evolution of security-aware CAD tools targeted to design for security and security assurance to enrich the ecosystem to have tools from multiple vendors with more capabilities and higher performance. 
    more » « less
  4. The Internet of Things (IoT), forming the foundation of Cyber Physical Systems (CPS), connects a huge number of ubiquitous sensing and mobile computing devices. The mobile IoT systems generate an enormous volume of a variety of dynamic context data and typically count on centralized architectures to process them. However, their inability to ensure security and decline in communication efficiency and response time with the increase in the size of IoT network are some of the many concerning weaknesses that are holding back the fast-paced growth of IoT. Realizing the limitations of centralized systems, recently blockchain-based decentralized architecture is being considered as the key to redesigning the IoT systems in a way that is designed to be secure, transparent, highly resistant to outages, auditable, and efficient. However, before realizing the new promise of blockchain for IoT, there are significant challenges to address. One fundamental challenge is the scale issue around data collection, storage, and analytic as IoT sensor devices possess limited computational power and storage capabilities. In particular, since the chain is always growing, IoT devices require more and more resources. Thus, an oversized chain poses storage and scalability problems. With this in mind, the overall goal of our research is to design a lightweight scalable blockchain framework for IoT of mobile devices. This framework, coined as "Sensor-Chain", promises a new generation of lightweight blockchain management with a superior reduction in resource consumption, and at the same time capable of retaining critical information about the IoT systems of mobile devices. 
    more » « less
  5. The Internet of Things (IoT) is an emerging technology that aims to connect our environment to the internet in the same way that personal computers connected people. As this technology progresses, the IoT paradigm becomes more prevalent in our everyday lives. The nature of IoT applications necessitates devices that are low-cost, power-sensitive, integrated, unobtrusive, and interoperable with existing cloud platforms and services, for example, Amazon AWS IoT, IBM Watson IoT. As a result, these devices are often small in size, with just enough computing power needed for their specific tasks. These resource-constrained devices are often unable to implement traditional network security measures and represent a vulnerability to network attackers as a result. Few frameworks are positioned to handle the influx of this new technology and the security concerns associated with it. Current solutions fail to provide a comprehensive and multi-layer solution to these inherent IoT security vulnerabilities. This paper presents a layered approach to IoT testbed that aims to bridge multiple connection standards and cloud platforms. To solve challenges surrounding this multi-layer IoT testbed, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates two mesh networks together and performs seamlessly transmission of multi-standard packets. The proposed IoT testbed interoperates with existing multi-standards (Wi-Fi, 6LoWPAN) and segments of networks, and provides both Internet and resilient sensor coverage to the cloud platform. To ensure confidentiality and authentication of IoT devices when interoperating with multiple service platforms, we propose optimized cryptographic techniques and software frameworks for IoT devices. We propose to extend and modify the existing open-source IDS platforms such as Snort to support IoT platforms and environments. We validate the efficacy of the proposed system by evaluating its performance and effect on key system resources. The work within this testbed design and implementation provides a solid foundation for further IoT system development. 
    more » « less