Problem definition: We consider network revenue management problems with flexible products. We have a network of resources with limited capacities. To each customer arriving into the system, we offer an assortment of products. The customer chooses a product within the offered assortment or decides to leave without a purchase. The products are flexible in the sense that there are multiple possible combinations of resources that we can use to serve a customer with a purchase for a particular product. We refer to each such combination of resources as a route. The service provider chooses the route to serve a customer with a purchase for a particular product. Such flexible products occur, for example, when customers book at-home cleaning services but leave the timing of service to the company that provides the service. Our goal is to find a policy to decide which assortment of products to offer to each customer to maximize the total expected revenue, making sure that there are always feasible route assignments for the customers with purchased products. Methodology/results: We start by considering the case in which we make the route assignments at the end of the selling horizon. The dynamic programming formulation of the problem is significantly different from its analogue without flexible products as the state variable keeps track of the number of purchases for each product rather than the remaining capacity of each resource. Letting L be the maximum number of resources in a route, we give a policy that obtains at least [Formula: see text] fraction of the optimal total expected revenue. We extend our policy to the case in which we make the route assignments periodically over the selling horizon. Managerial implications: To our knowledge, the policy that we develop is the first with a performance guarantee under flexible products. Thus, our work constructs policies that can be implemented in practice under flexible products, also providing performance guarantees. Funding: The work of H. Topaloglu was partly funded by the National Science Foundation [Grant CMMI-1825406]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0583 .
more »
« less
Dynamic Assortment Optimization for Reusable Products with Random Usage Durations
We consider dynamic assortment problems with reusable products, in which each arriving customer chooses a product within an offered assortment, uses the product for a random duration of time, and returns the product back to the firm to be used by other customers. The goal is to find a policy for deciding on the assortment to offer to each customer so that the total expected revenue over a finite selling horizon is maximized. The dynamic-programming formulation of this problem requires a high-dimensional state variable that keeps track of the on-hand product inventories, as well as the products that are currently in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50% of the optimal total expected revenue. This policy is based on constructing linear approximations to the optimal value functions. When the usage duration is infinite or follows a negative binomial distribution, we also show how to efficiently perform rollout on a simple static policy. Performing rollout corresponds to using separable and nonlinear value function approximations. The resulting policy is also guaranteed to obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite usage durations captures the case where the customers purchase the products outright without returning them at all. Under infinite usage durations, we give a variant of our rollout approach whose total expected revenue differs from the optimal by a factor that approaches 1 with rate cubic-root of Cmin, where Cmin is the smallest inventory of a product. We provide computational experiments based on simulated data for dynamic assortment management, as well as real parking transaction data for the city of Seattle. Our computational experiments demonstrate that the practical performance of our policies is substantially better than their performance guarantees and that performing rollout yields noticeable improvements.
more »
« less
- PAR ID:
- 10172517
- Date Published:
- Journal Name:
- Management science
- Volume:
- 66
- Issue:
- 7
- ISSN:
- 0025-1909
- Page Range / eLocation ID:
- 2820-2844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items.more » « less
-
We examine the revenue–utility assortment optimization problem with the goal of finding an assortment that maximizes a linear combination of the expected revenue of the firm and the expected utility of the customer. This criterion captures the trade-off between the firm-centric objective of maximizing the expected revenue and the customer-centric objective of maximizing the expected utility. The customers choose according to the multinomial logit model, and there is a constraint on the offered assortments characterized by a totally unimodular matrix. We show that we can solve the revenue–utility assortment optimization problem by finding the assortment that maximizes only the expected revenue after adjusting the revenue of each product by the same constant. Finding the appropriate revenue adjustment requires solving a nonconvex optimization problem. We give a parametric linear program to generate a collection of candidate assortments that is guaranteed to include an optimal solution to the revenue–utility assortment optimization problem. This collection of candidate assortments also allows us to construct an efficient frontier that shows the optimal expected revenue–utility pairs as we vary the weights in the objective function. Moreover, we develop an approximation scheme that limits the number of candidate assortments while ensuring a prespecified solution quality. Finally, we discuss practical assortment optimization problems that involve totally unimodular constraints. In our computational experiments, we demonstrate that we can obtain significant improvements in the expected utility without incurring a significant loss in the expected revenue. This paper was accepted by Omar Besbes, revenue management and market analytics.more » « less
-
We provide an approximation algorithm for network revenue management problems. In our approximation algorithm, we construct an approximate policy using value function approximations that are expressed as linear combinations of basis functions. We use a backward recursion to compute the coefficients of the basis functions in the linear combinations. If each product uses at most L resources, then the total expected revenue obtained by our approximate policy is at least [Formula: see text] of the optimal total expected revenue. In many network revenue management settings, although the number of resources and products can become large, the number of resources used by a product remains bounded. In this case, our approximate policy provides a constant-factor performance guarantee. Our approximate policy can handle nonstationarities in the customer arrival process. To our knowledge, our approximate policy is the first approximation algorithm for network revenue management problems under nonstationary arrivals. Our approach can incorporate the customer choice behavior among the products, and allows the products to use multiple units of a resource, while still maintaining the performance guarantee. In our computational experiments, we demonstrate that our approximate policy performs quite well, providing total expected revenues that are substantially better than its theoretical performance guarantee.more » « less
-
Problem definition: We consider the assortment optimization problem of a retailer that operates a physical store and an online store. The products that can be offered are described by their features. Customers purchase among the products that are offered in their preferred store. However, customers who purchase from the online store can first test out products offered in the physical store. These customers revise their preferences for online products based on the features that are shared with the in-store products. The full assortment is offered online, and the goal is to select an assortment for the physical store to maximize the retailer’s total expected revenue. Academic/practical relevance: The physical store’s assortment affects preferences for online products. Unlike traditional assortment optimization, the physical store’s assortment influences revenue from both stores. Methodology: We introduce a features tree to organize products by features. The nonleaf vertices on the tree correspond to features, and the leaf vertices correspond to products. The ancestors of a leaf correspond to features of the product. Customers choose among the products within their store’s assortment according to the multinomial logit model. We consider two settings; either all customers purchase online after viewing products in the physical store, or we have a mix of customers purchasing from each store. Results: When all customers purchase online, we give an efficient algorithm to find the optimal assortment to display in the physical store. With a mix of customers, the problem becomes NP-hard, and we give a fully polynomial-time approximation scheme. We numerically demonstrate that we can closely approximate the case where products have arbitrary combinations of features without a tree structure and that our fully polynomial-time approximation scheme performs remarkably well. Managerial implications: We characterize conditions under which it is optimal to display expensive products with underrated features and expose inexpensive products with overrated features.more » « less