As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discussmore »
Combining Renewable Solar and Open Air Cooling for Greening Internet-Scale Distributed Networks
The widespread adoption and popularity of Internet-scale Distributed Networks (IDNs) has led to an explosive growth in the infrastructure of these networks. Unfortunately, this growth has also led to a rapid increase in energy consumption with its accompanying environmental impact. Therefore, energy efficiency is a key consideration in operating and designing these power-hungry networks. In this paper, we study the greening potential of combining two contrasting sources of renewable energy, namely solar energy and Open Air Cooling (OAC). OAC involves the use of outside air to cool data centers if the weather outside is cold and dry enough. Therefore OAC is likely to be abundant in colder weather and at night-time. In contrast, solar energy is correlated with sunny weather and day-time. Given their contrasting natures, we study whether synthesizing these two renewable sources of energy can yield complementary benefits. Given the intermittent nature of renewable energy, we use batteries and load shifting to facilitate the use of green energy and study trade-offs in brown energy reduction based on key parameters like battery size, number of solar panels, and radius of load movement. We do a detailed cost analysis, including amortized cost savings as well as a break-even analysis for more »
- Publication Date:
- NSF-PAR ID:
- 10173206
- Journal Name:
- Proceedings of the Tenth ACM International Conference on Future Energy Systems (e-Energy'19)
- Page Range or eLocation-ID:
- 303 to 314
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailingmore »
-
Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant withmore »
-
Recent advances in computing algorithms and hardware have rekindled interest in developing high-accuracy, low-cost surrogate models for simulating physical systems. The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. One particularly popular technique being explored within the weather and climate modelling community is the echo state network (ESN), an attractive alternative to other well-known deep learning architectures. Using the classical Lorenz 63 system, and the three tier multi-scale Lorenz 96 system (Thornes T, Duben P, Palmer T. 2017 Q. J. R. Meteorol. Soc. 143 , 897–908. ( doi:10.1002/qj.2974 )) as benchmarks, we realize that previously studied state-of-the-art ESNs operate in two distinct regimes, corresponding to low and high spectral radius (LSR/HSR) for the sparse, randomly generated, reservoir recurrence matrix. Using knowledge of the mathematical structure of the Lorenz systems along with systematic ablation and hyperparameter sensitivity analyses, we show that state-of-the-art LSR-ESNs reduce to a polynomial regression model which we call Domain-Driven Regularized Regression (D2R2). Interestingly, D2R2 is a generalization of the well-known SINDy algorithm (Brunton SL, Proctor JL, Kutzmore »
-
Buildings use 40% of the global energy consumption and emit 30% of the CO2 emissions [1]. Of the total building energy, 30-40% are for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. In the United States, most buildings use forced air technology to deliver heating/cooling to the targeted thermal zones. However, this system may cause complaints about thermal comfort from inhabitants due to excessive draft movement, inhomogeneous conditioning, and difficulty in accurately controlling the temperature for a system serving multiple rooms. Therefore, researchers have suggested using a radiant heating and cooling system as a better alternative to all-air systems to address these issues. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. In the cooling season, the radiant system often works with a separated dehumidifier to meet space latent and sensible cooling load (called separate sensible and latent cooling system SSLC). The SSLC has shown higher efficiency than forced air systems. However, it is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluationmore »