skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proximal Recursion for the Wonham Filter
This paper contributes to the emerging viewpoint that governing equations for dynamic state estimation, conditioned on the history of noisy measurements, can be viewed as gradient flow on the manifold of joint probability density functions with respect to suitable metrics. Herein, we focus on the Wonham filter where the prior dynamics is given by a continuous time Markov chain on a finite state space; the measurement model includes noisy observation of the (possibly nonlinear function of) state. We establish that the posterior flow given by the Wonham filter can be viewed as the small time-step limit of proximal recursions of certain functionals on the probability simplex. The results of this paper extend our earlier work where similar proximal recursions were derived for the Kalman-Bucy filter.  more » « less
Award ID(s):
1839441 1807664
PAR ID:
10173651
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE 58th Conference on Decision and Control (CDC)
Page Range / eLocation ID:
660 to 665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How to steer a given joint state probability density function to another over finite horizon subject to a controlled stochastic dynamics with hard state (sample path) constraints? In applications, state constraints may encode safety requirements such as obstacle avoidance. In this paper, we perform the feedback synthesis for minimum control effort density steering (a.k.a. Schrödinger bridge) problem subject to state constraints. We extend the theory of Schrödinger bridges to account the reflecting boundary conditions for the sample paths, and provide a computational framework building on our previous work on proximal recursions, to solve the same. 
    more » « less
  2. We develop a new computational framework to solve the partial differential equations (PDEs) governing the flow of the joint probability density functions (PDFs) in continuous-time stochastic nonlinear systems. The need for computing the transient joint PDFs subject to prior dynamics arises in uncertainty propagation, nonlinear filtering and stochastic control. Our methodology breaks away from the traditional approach of spatial discretization or function approximation – both of which, in general, suffer from the “curse-of-dimensionality”. In the proposed framework, we discretize time but not the state space. We solve infinite dimensional proximal recursions in the manifold of joint PDFs, which in the small time-step limit, is theoretically equivalent to solving the underlying transport PDEs. The resulting computation has the geometric interpretation of gradient flow of certain free energy functional with respect to the Wasserstein metric arising from the theory of optimal mass transport. We show that dualization along with an entropic regularization, leads to a cone-preserving fixed point recursion that is proved to be contractive in Thompson metric. A block co-ordinate iteration scheme is proposed to solve the resulting nonlinear recursions with guaranteed convergence. This approach enables remarkably fast computation for non-parametric transient joint PDF propagation. Numerical examples and various extensions are provided to illustrate the scope and efficacy of the proposed approach. 
    more » « less
  3. Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study. 
    more » « less
  4. Motivated by the computation of the non-parametric maximum likelihood estimator (NPMLE) and the Bayesian posterior in statistics, this paper explores the problem of convex optimization over the space of all probability distributions. We introduce an implicit scheme, called the implicit KL proximal descent (IKLPD) algorithm, for discretizing a continuous-time gradient flow relative to the KullbackLeibler divergence for minimizing a convex target functional. We show that IKLPD converges to a global optimum at a polynomial rate from any initialization; moreover, if the objective functional is strongly convex relative to the KL divergence, for example, when the target functional itself is a KL divergence as in the context of Bayesian posterior computation, IKLPD exhibits globally exponential convergence. Computationally, we propose a numerical method based on normalizing flow to realize IKLPD. Conversely, our numerical method can also be viewed as a new approach that sequentially trains a normalizing flow for minimizing a convex functional with a strong theoretical guarantee. 
    more » « less
  5. This paper considers the problem of continuous state estimation from discrete context-based measurements. Context measurements provide binary information as obtained from the system’s environment, e.g., a medical alarm indicating that a vital sign is above a certain threshold. Since they provide state infor- mation, these measurements can be used for estimation purposes, similar to standard continuous measurements, especially when standard sensors are biased or attacked. Context measurements are assumed to have a known probability of occurring given the state; in particular, we focus on the probit function to model threshold-based measurements such as the medical-alarm scenario. We develop a recursive context-aware filter by approx- imating the posterior distribution with a Gaussian distribution with the same first two moments as the true posterior. We show that the filter’s expected uncertainty is bounded when the probability of receiving context measurements is lower-bounded by some positive number for all system states. Furthermore, we provide an observability-like result – all eigenvalues of the filter’s covariance matrix converge to 0 after repeated updates if and only if a persistence of excitation condition holds for the context measurements. Finally, in addition to simulation evaluations, we applied the filter to the problem of estimating a patient’s blood oxygen content during surgery using real-patient data. 
    more » « less