A bstract We consider higher-dimensional effective (EFT) operators consisting of fermion dark matter (DM) connecting to Standard Model (SM) leptons upto dimension six. Considering all operators together and assuming the DM to undergo thermal freeze-out, we find out relic density allowed parameter space in terms of DM mass ( m χ ) and New Physics (NP) scale (Λ) with one loop direct search constraints from XENON1T experiment. Allowed parameter space of the model is probed at the proposed International Linear Collider (ILC) via monophoton signal for both Dirac and Majorana cases, limited by the centre-of-mass energy $$ \sqrt{s} $$ s =1 TeV, where DM mass can be probed within $$ {m}_{\chi }<\frac{\sqrt{s}}{2} $$ m χ < s 2 for the pair production to occur and Λ > $$ \sqrt{s} $$ s for the validity of EFT framework.
more »
« less
Strange Stars in the Vector Interaction Enhanced Bag Model
The vector interaction enhanced Bag model (vBag) for dense quark matter extends the commonly used thermodynamic Bag model (tdBag) by incorporating effects of dynamical chiral symmetry breaking (D χ SB) and vector repulsion. Motivated by the suggestion that the stability of strange matter is in tension with chiral symmetry breaking (D χ SB) we examine the parameter space for its stability in the vBag model in this work. Assuming the chiral transition occurs at sufficiently low density, we determine the stability region of strange matter as a function of the effective Bag constant and the vector coupling. As an astrophysical application, we construct contours of maximum mass M max and radius at maximum mass R max in this region of parameter space. We also study the stability of strange stars in the vBag model with maximum mass in the 2 M ⊙ range by computing the spectrum of radial oscillations, and comparing to results from the tdBag model, find some notable differences.
more »
« less
- Award ID(s):
- 1913693
- PAR ID:
- 10174237
- Date Published:
- Journal Name:
- Particles
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2571-712X
- Page Range / eLocation ID:
- 447 to 456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract The identity of Dark Matter (DM) is one of the most active topics in particle physics today. Supersymmetry (SUSY) is an extension of the standard model (SM) that could describe the particle nature of DM in the form of the lightest neutralino in R-parity conserving models. We focus on SUSY models that solve the hierarchy problem with small fine tuning, and where the lightest SUSY particles $$ \left({\tilde{\upchi}}_1^0,{\tilde{\upchi}}_1^{\pm },{\tilde{\upchi}}_2^0\right) $$ χ ˜ 1 0 χ ˜ 1 ± χ ˜ 2 0 are a triplet of higgsino-like states, such that the mass difference $$ \Delta m\left({\tilde{\upchi}}_2^0,{\tilde{\upchi}}_1^0\right) $$ Δ m χ ˜ 2 0 χ ˜ 1 0 is 0.5–50 GeV. We perform a feasibility study to assess the long-term discovery potential for these compressed SUSY models with higgsino-like states, using vector boson fusion (VBF) processes in the context of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, at the CERN Large Hadron Collider. Assuming an integrated luminosity of 3000 fb − 1 , we find that stringent VBF requirements, combined with large missing momentum and one or two low- p T leptons, is effective at reducing the major SM backgrounds, leading to a 5 σ (3 σ ) discovery reach for $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 < 180 (260) GeV, and a projected 95% confidence level exclusion region that covers $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 up to 385 GeV, parameter space that is currently unconstrained by other experiments.more » « less
-
Strange stars ought to exist in the universe according to the strange quark matter hypothesis, which states that matter made of roughly equal numbers of up, down, and strange quarks could be the true ground state of baryonic matter rather than ordinary atomic nuclei. Theoretical models of strange quark matter, such as the standard MIT bag model, the density-dependent quark mass model, or the quasi-particle model, however, appear to be unable to reproduce some of the properties (masses, radii, and tidal deformabilities) of recently observed compact stars. This is different if alternative gravity theory (e.g., non-Newtonian gravity) or dark matter (e.g., mirror dark matter) are considered, which resolve these issues. The possible existence of strange stars could thus provide a clue to new physics, as discussed in this review.more » « less
-
A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.more » « less
-
Molecular chirality is a fundamental phenomenon, underlying both life as we know it and industrial pharmaceutical syntheses. Understanding the symmetry breaking phase transitions exhibited by many chiral molecular substances provides basic insights for topics ranging from the origin of life to the rational design of drug manufacturing processes. In this work, we have performed molecular dynamics simulations to investigate the fluid–fluid phase transitions of a flexible three-dimensional four-site chiral molecular model developed by Latinwo et al. [J. Chem. Phys. 145, 154503 (2016)] and Petsev et al. [J. Chem. Phys. 155, 084105 (2021)]. By introducing a bias favoring local homochiral vs heterochiral interactions, the system exhibits a phase transition from a single achiral phase to a single chiral phase that undergoes infrequent interconversion between the two thermodynamically identical chiral states: the L-rich and D-rich phases. According to the phase rule, this reactive binary system has two independent degrees of freedom and exhibits a density-dependent critical locus. Below the liquid–liquid critical locus, there exists a first-order vapor–liquid coexistence region with a single independent degree of freedom. Our results provide basic thermodynamic and kinetic insights for understanding many-body chiral symmetry breaking phenomena.more » « less
An official website of the United States government

