skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture
Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly( n -butyl acrylate- co -2-hydroxy-3-dipicolylamino methacrylate) (P( n BA- co -GMADPA)). The Eu–DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu–DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu 3+ ions can weaken the cross-linking networks formed by Eu–DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers.  more » « less
Award ID(s):
1705566
PAR ID:
10175085
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
9
ISSN:
1744-683X
Page Range / eLocation ID:
2276 to 2284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties. 
    more » « less
  2. Abstract New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. 
    more » « less
  3. Side-chain sequence enabled regioisomeric acceptors, bearing different side-chain sequences on the same conjugated backbone, are herein reported. Two regioregular polymers PTBI-1 and PTBI-2 and one regiorandom polymer PTBI-3 were synthesized from these two regioisomeric acceptors for a comparative study. UV–vis–NIR absorption spectroscopy and electrochemical study confirmed similar frontier molecular orbital levels of the three polymers in their solid state. More intriguingly, absorption profiles suggest that the sequence of side chains greatly governs the aggregation behaviors. Furthermore, the PTBI-2 film shows larger ordered domains than PTBI-1 and PTBI-3 films, as supported by AFM and GIWAXS measurements. As a result, PTBI-2-based FET devices achieved an average hole mobility of 1.37 cm2 V–1 s–1, much higher than the two polymers with other side-chain sequences. The regiorandom PTBI-3 exhibited the lowest average hole mobility of 0.27 cm2 V–1 s–1. This study highlights the significant impact of side-chain sequence regioisomerism on aggregation behaviors, morphologies, and subsequently charge transport properties of donor–acceptor type conjugated polymers. 
    more » « less
  4. Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics. 
    more » « less
  5. Abstract Donor–acceptor (D–A) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)‐based D–A polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side‐chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear‐chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side‐chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field‐effect transistors. This study deconvolutes the alignment of different components within the thin‐film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers. 
    more » « less