skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: A Blockchain-based Traceability System for Waste Management in Smart Cities
Waste tracking is becoming an important concern for developed countries as well as developing regions, where municipalities aim to assure proper waste management considering environmental and economic objectives. Waste tracking is important not only for a transparent reporting system compatible with environmental regulations but also for economically viable waste collection and recovery solutions. In this paper, a waste tracking system based on the blockchain technology is introduced where different entities involved in the system will be able to retrieve required data from the platform and decide on their level of contributions. The conventional technologies do not provide a sufficient level of transparency and coordination among different entities. With the introduction of blockchain as a tamper-proof technology, municipalities can enhance the efficiency of their waste management efforts. The proposed blockchain technology can connect proper stakeholders towards collaboration and sharing information. The concept of a smart contract for waste management is discussed and further, a decision-making framework is developed to guide users of the system select proper services available to them, depending on the level of data sharing, cost, reliability, and the security level that they expect from the system.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2020, August 16 – 19, 2020, St. Louis, MO
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The potential of smart cities in remediating environmental problems in general and waste management, in particular, is an important question that needs to be investigated in academic research. Built on an integrative review of the literature, this study offers insights into the potential of smart cities and connected communities in facilitating waste management efforts. Shortcomings of existing waste management practices are highlighted and a conceptual framework for a centralized waste management system is proposed, where three interconnected elements are discussed: (1) an infrastructure for proper collection of product lifecycle data to facilitate full visibility throughout the entire lifespan of a product, (2) a set of new business models relied on product lifecycle data to prevent waste generation, and (3) an intelligent sensor-based infrastructure for proper upstream waste separation and on-time collection. The proposed framework highlights the value of product lifecycle data in reducing waste and enhancing waste recovery and the need for connecting waste management practices to the whole product lifecycle. An example of the use of tracking and data sharing technologies for investigating the waste management issues has been discussed. Finally, the success factors for implementing the proposed framework and some thoughts on future research directions have been discussed. 
    more » « less
  2. Lenzen, Manfred (Ed.)
    Mapping material flows in an economy is crucial to identifying strategies for resource management toward lowering the waste and environmental impacts of society, a key objective of research in industrial ecology. However, constructing models for mapping material flows at a sectoral level, such as in physical input–output tables (PIOTs) at highly disaggregated levels, is tedious and relies on a large amount of empirical data. To overcome this challenge, a novel collaborative cloud platform PIOT-Hub is developed in this work. This platform utilizes a Python-based simulation system for extracting material flow data from mechanistic models, thus semi-automating the generation of PIOTs. The simulation system implements a bottom-up approach of utilizing scaled engineering models to generate physical supply tables (PSTs) and physical use tables (PUTs) which are converted to PIOTs (described in (Vunnava & Singh, 2021)). Mechanistic models can be uploaded by users for sectors on PIOT-Hub to develop PIOTs for any region. Both models and resulting PST/PUT/PIOTs can be shared with other users utilizing the collaborative platform. The automation and sharing features provided by PIOT-Hub will help to significantly reduce the time required to develop PIOT and improve the reproducibility/continuity of PIOT generation, thus allowing the study of the changing nature of material flows in regional economy. In this paper, we describe the simulation system MFDES and PIOT-Hub architecture/functionality through a demo example for creating PIOT in agro-based sectors for Illinois. Future work includes scaling up the cloud infrastructure for large scale PIOT generation and enhancing the tool compatibility for different sectors in economy. 
    more » « less
  3. An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets. 
    more » « less
  4. Substandard and falsified (SF) pharmaceuticals account for an estimated 10% of the pharmaceutical supply chain in low- and middle-income countries (LMICs), where a lack of regulatory and laboratory resources limits the ability to conduct effective post-market surveillance and allows SF products to penetrate the supply chain. The Distributed Pharmaceutical Analysis Laboratory (DPAL) was established in 2014 to expand testing of pharmaceutical dosage forms sourced from LMICs; DPAL is an alliance of academic institutions throughout the United States and abroad that provides high quality, validated chemical analysis of pharmaceutical dosage forms sourced from partners in LMICs. Results from analysis are reported to relevant regulatory agencies and are used to inform purchasing decisions made by in-country stakeholders. As the DPAL program has expanded to testing more than 1000 pharmaceutical dosage forms annually, challenges have surfaced regarding data management and sample tracking. Here, we describe a pilot project between DPAL and ARTiFACTs that applies blockchain to organize and manage key data generated during the DPAL workflow, including a sample’s progress through the workflow, its physical location, provenance of metadata, and lab reputability. Recording time and date stamps with this data will create a permanent and verifiable chain-of-custody for samples. This secure, distributed ledger will be linked to an easy-to-use dashboard, allowing stakeholders to view results and experimental details for each sample in real time and verify the integrity of DPAL analysis data. Introducing this blockchain-based system as a pilot will allow us to test the technology with real users analyzing real samples. Feedback from users will be recorded and necessary adjustments will be made to the system before the implementation of blockchain across all DPAL sites. Anticipated benefits of implementing blockchain for managing DPAL data include efficient management for routing work, increasing throughput, creating a chain of custody for samples and their data in alignment with the distributed nature of DPAL, and using the analysis results to detect patterns of quality within and across brands of products and develop enhanced sampling techniques and best practices. 
    more » « less
  5. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less