Silicon microring resonators (Si-MRRs) play essential roles in on-chip wavelength division multiplexing (WDM) systems due to their ultra-compact size and low energy consumption. However, the resonant wavelength of Si-MRRs is very sensitive to temperature fluctuations and fabrication process variation. Typically, each Si-MRR in the WDM system requires precise wavelength control by free carrier injection using PIN diodes or thermal heaters that consume high power. This work experimentally demonstrates gate-tuning on-chip WDM filters for the first time with large wavelength coverage for the entire channel spacing using a Si-MRR array driven by high mobility titanium-doped indium oxide (ITiO) gates. The integrated Si-MRRs achieve unprecedented wavelength tunability up to 589 pm/V, or VπL of 0.050 V cm with a high-quality factor of 5200. The on-chip WDM filters, which consist of four cascaded ITiO-driven Si-MRRs, can be continuously tuned across the 1543–1548 nm wavelength range by gate biases with near-zero power consumption.
We experimentally demonstrate a silicon photonic chip-scale 16-channel wavelength division multiplexer (WDM) operating in the O-band. The silicon photonic chip consists of a common-input bus waveguide integrated with a sequence of 16 spectral add-drop filters implemented by 4-port contra-directional Bragg couplers and resonant cladding modulated perturbations. The combination of these features reduces the spectral bandwidth of the filters and improves the crosstalk. An apodization of the cladding modulated perturbations between the bus and the add/drop waveguides is used to optimize the strength of the coupling coefficient in the propagation direction to reduce the intra-channel crosstalk on adjacent channels. The fabricated chip was validated experimentally with a measured intra-channel crosstalk of ∼−18.9 dB for a channel spacing of 2.6 nm. The multiplexer/demultiplexer chip was also experimentally tested with a 10 Gbps data waveform. The resulting eye-pattern indicates that this approach is suitable for datacenter WDM-based interconnects in the O-band with large aggregate bandwidths.
more » « less- PAR ID:
- 10175227
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 16
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 23620
- Size(s):
- Article No. 23620
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We present an experimental demonstration of notch filters with arbitrary center wavelengths capable of tunable analog output power values varying between full extinction of 15 and 0 dB. Each filter is composed of highly modular apodized four-port Bragg add/drop filters to reduce the crosstalk between concatenated devices. The constructed photonic integrated circuit experimentally demonstrates spectra shaping using four independent notch filters. Each notch filter supports a bandwidth of
and is shown to be suitable for realization of programmable photonic integrated circuits. -
Mode-group multiplexing (MGM) can increase the capacity of short-reach few-mode optical fiber communication links while avoiding complex digital signal processing. In this paper, we present the design and experimental demonstration of a novel mode-group demultiplexer (MG DeMux) using Fabry-Perot (FP) thin-film filters (TFFs). The MG DeMux supports low-crosstalk mode-group demultiplexing, with degeneracies commensurate with those of graded-index (GRIN) multimode fibers. We experimentally demonstrate this functionality by using a commercial six-cavity TFF that was intended for 100 GHz channel spaced wavelength-division multiplexing (WDM) system.
-
Bosco, Gabriella (Ed.)A system-on-chip (SoC) photonic-electronic linear- algebra accelerator with the features of wavelength-division- multiplexing (WDM) based broadband photodetections and high- dimensional matrix-inversion operations fabricated in advanced monolithic silicon-photonics (M-SiPh) semiconductor process technology is proposed to achieve substantial leaps in computation density and energy efficiency, including realistic considerations of energy/area overhead due to electronic/photonic on-chip conversions, integrations, and calibrations through holistic co- design methodologies to support linear-detection based massive multiple-input multiple-output (MIMO) decoding technology requiring the inversion of channel matrices and other emergent applications limited by linear-algebra computation capacities.more » « less