skip to main content


Title: Taming Behavioral Backward Incompatibilities via Cross-Project Testing and Analysis
In modern software development, software libraries play a crucial role in reducing software development effort and improving software quality. However, at the same time, the asynchronous upgrades of software libraries and client software projects often result in incompatibilities between different versions of libraries and client projects. When libraries evolve, it is often very challenging for library developers to maintain the so-called backward compatibility and keep all their external behavior untouched, and behavioral backward incompatibilities (BBIs) may occur. In practice, the regression test suites of library projects often fail to detect all BBIs. Therefore, in this paper, we propose DeBBI to detect BBIs via cross-project testing and analysis, i.e., using the test suites of various client projects to detect library BBIs. Since executing all the possible client projects can be extremely time consuming, DeBBI transforms the problem of cross-project BBI detection into a traditional information retrieval (IR) problem to execute the client projects with higher probability to detect BBIs earlier. Furthermore, DeBBI considers project diversity and test relevance information for even faster BBI detection. The experimental results show that DeBBI can reduce the end-to-end testing time for detecting the first and average unique BBIs by 99.1% and 70.8% for JDK compared to naive cross-project BBI detection. Also, DeBBI has been applied to other popular 3rd-party libraries. To date, DeBBI has detected 97 BBI bugs with 19 already confirmed as previously unknown bugs.  more » « less
Award ID(s):
1763906 1846467
NSF-PAR ID:
10175531
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE/ACM International Conference on Software Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When developers make changes to their code, they typically run regression tests to detect if their recent changes (re)introduce any bugs. However, many tests are flaky, and their outcomes can change non-deterministically, failing without apparent cause. Flaky tests are a significant nuisance in the development process, since they make it more difficult for developers to trust the outcome of their tests. The traditional approach to identify flaky tests is to rerun them multiple times: if a test is observed both passing and failing on the same code, it is definitely flaky. We conducted a very large empirical study looking for flaky tests by rerunning the test suites of 24 projects 10,000 times each, and found that even with this many reruns, some flaky tests were still not detected. We propose FlakeFlagger, a novel approach that collects a set of features describing the behavior of each test, and then predicts tests that are likely to be flaky based on similar behavioral features. We found that FlakeFlagger correctly labeled at least as many tests as flaky as a state-of-the-art flaky test classifier, but that FlakeFlagger reported far fewer false positives (an increase in precision from just 11% to 60%). This lower false positive rate translates directly to saved time for researchers and developers who use the classification result to guide more expensive flaky test detection processes. By investigating the information gain of each feature, we conclude that test execution time, overall test coverage, coverage of recently changed lines and usage of third party libraries are effective predictors of test flakiness. We did not find any keywords or tokens in the source code of tests that were effective in predicting test flakiness, and did not find the presence of test smells to be effective in predicting test flakiness.

    This archive contains the dataset that we collected of flaky tests, along with the features that we collected from each test.

    Contents:
    Project_Info.csv: List of projects and their revisions studied
    build-logs-<project-slug>.tgz: An archive of all of the maven build logs from each of the 10,000 runs of that project's test suite. 
    failing-test-reports-<project-slug>.tgz An archive of all of the surefire XML reports for each failing test of each build of each project.
    test_results.csv: Summary of the number of passing and failing runs for each test in each project. 
    "Run ID" is a key into the <project-slug>.tgz archive also in this artifact, which refers to the run that we observed the test fail on.
    test_features.csv: Summary of the features that each test had, as per our feature detectors described in the paper
    flakeflagger-code.zip: All scripts used to generate and process these results. These scripts are also located at https://github.com/AlshammariA/FlakeFlagger

     
    more » « less
  2. JavaScript (JS) has evolved into a versatile and popular programming language for not only the web, but also a wide range of server-side and client-side applications. Effective, efficient, and easy-to-use testing techniques for JS scripts are in great demand. In this paper, we introduce a holistic approach to applying concolic testing to JS scripts in-situ, i.e., JS scripts are executed in their native environments as part of concolic execution and test cases generated are directly replayed in these environments. We have implemented this approach in the context of Node.js, a JS runtime built on top of Chrome’s V8 JS engine, and evaluated its effectiveness and efficiency through application to 180 Node.js libraries with heavy use of string operations. For 85% of these libraries, it achieved statement coverage ranging between 75% and 100%, a close match in coverage with the hand-crafted unit test suites accompanying their NPM releases. Our approach detected numerous exceptions in these libraries. We analyzed the exception reports for 12 representative libraries and found 6 bugs in these libraries, 4 of which are previously undetected. The bug reports and patches that we filed for these bugs have been accepted by the library developers on GitHub. 
    more » « less
  3. Dynamic memory managers are a crucial component of almost every modern software system. In addition to implementing efficient allocation and reclamation, memory managers provide the essential abstraction of memory as distinct objects, which underpins the properties of memory safety and type safety. Bugs in memory managers, while not common, are extremely hard to diagnose and fix. One reason is that their implementations often involve tricky pointer calculations, raw memory manipulation, and complex memory state invariants. While these properties are often documented, they are not specified in any precise, machine-checkable form. A second reason is that memory manager bugs can break the client application in bizarre ways that do not immediately implicate the memory manager at all. A third reason is that existing tools for debugging memory errors, such as Memcheck, cannot help because they rely on correct allocation and deallocation information to work. In this paper we present Permchecker, a tool designed specifically to detect and diagnose bugs in memory managers. The key idea in Permchecker is to make the expected structure of the heap explicit by associating typestates with each piece of memory. Typestate captures elements of both type (e.g., page, block, or cell) and state (e.g., allocated, free, or forwarded). Memory manager developers annotate their implementation with information about the expected typestates of memory and how heap operations change those typestates. At runtime, our system tracks the typestates and ensures that each memory access is consistent with the expected typestates. This technique detects errors quickly, before they corrupt the application or the memory manager itself, and it often provides accurate information about the reason for the error. The implementation of Permchecker uses a combination of compile-time annotation and instrumentation, and dynamic binary instrumentation (DBI). Because the overhead of DBI is fairly high, Permchecker is suitable for a testing and debugging setting and not for deployment. It works on a wide variety of existing systems, including explicit malloc/free memory managers and garbage collectors, such as those found in JikesRVM and OpenJDK. Since bugs in these systems are not numerous, we developed a testing methodology in which we automatically inject bugs into the code using bug patterns derived from real bugs. This technique allows us to test Permchecker on hundreds or thousands of buggy variants of the code. We find that Permchecker effectively detects and localizes errors in the vast majority of cases; without it, these bugs result in strange, incorrect behaviors usually long after the actual error occurs. 
    more » « less
  4. Software developers often struggle to update APIs, leading to manual, time-consuming, and error-prone processes. We introduce Melt, a new approach that generates lightweight API migration rules directly from pull requests in popular library repositories. Our key insight is that pull requests merged into open-source libraries are a rich source of information sufficient to mine API migration rules. By leveraging code examples mined from the library source and automatically generated code examples based on the pull requests, we infer transformation rules in Comby, a language for structural code search and replace. Since inferred rules from single code examples may be too specific, we propose a generalization procedure to make the rules more applicable to client projects. Melt rules are syntax-driven, interpretable, and easily adaptable. Moreover, unlike previous work, our approach enables rule inference to seamlessly integrate into the library workflow, removing the need to wait for client code migrations. We evaluated Melt on pull requests from four popular libraries, successfully mining 461 migration rules from code examples in pull requests and 114 rules from auto-generated code examples. Our generalization procedure increases the number of matches for mined rules by 9×. We applied these rules to client projects and ran their tests, which led to an overall decrease in the number of warnings and fixing some test cases demonstrating MELT's effectiveness in real-world scenarios. 
    more » « less
  5. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less