 NSFPAR ID:
 10176079
 Date Published:
 Journal Name:
 2019 IEEE 58th Conference on Decision and Control (CDC)
 Page Range / eLocation ID:
 3429 to 3434
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

This paper considers the problem of error in variables identification for switched affine models. Since it is well known that this problem is generically NP hard, several relaxations have been proposed in the literature. However, while these approaches work well for low dimensional systems with few subsystems, they scale poorly with both the number of subsystems and their memory. To address this difficulty, we propose a computationally efficient alternative, based on embedding the data in the manifold of positive semidefinite matrices, and using a manifold metric there to perform the identification. Our main result shows that, under dwelltime assumptions, the proposed algorithm is convergent, in the sense that it is guaranteed to identify the system for suitably low noise. In scenarios with larger noise levels, we provide experimental results showing that the proposed method outperforms existing ones. The paper concludes by illustrating these results with academic examples and a nontrivial application: action video segmentation.more » « less

Avidan, S. (Ed.)We address the problem of segmenting moving rigid objects based on twoview image correspondences under a perspective camera model. While this is a well understood problem, existing methods scale poorly with the number of correspondences. In this paper we propose a fast segmentation algorithm that scales linearly with the number of correspondences and show that on benchmark datasets it offers the best tradeoff between error and computational time: it is at least one order of magnitude faster than the best method (with comparable or better accuracy), with the ratio growing up to three orders of magnitude for larger number of correspondences. We approach the problem from an algebraic perspective by exploiting the fact that all points belonging to a given object lie in the same quadratic surface. The proposed method is based on a characterization of each surface in terms of the Christoffel polynomial associated with the probability that a given point belongs to the surface. This allows for efficiently segmenting points “one surface at a time” in O(number of points)more » « less

Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix highperformance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from lowend consumer grade devices such as the Nvidia GTX 970 to higherend devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely computeintensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floatingpoint calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly wellknown issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely timeconsuming for algorithm research in which a single run often taxes a computing environment to its limits. Wellknown techniques such as crossvalidation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when rerunning the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Crossvalidation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Largescale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPUaccelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are nondeterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multithreading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32bit since Python defaults to 64bit. We try to avoid using 64bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [1113]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.more » « less

We present a principalagent model of a oneshot, shallow, systems engineering process. The process is "oneshot" in the sense that decisions are made during a onetime step and that they are final. The term "shallow" refers to a onelayer hierarchy of the process. Specifically, we assume that the systems engineer has already decomposed the problem in subsystems and that each subsystem is assigned to a different subsystem engineer. Each subsystem engineer works independently to maximize their own expected payoff. The goal of the systems engineer is to maximize the systemlevel payoff by incentivizing the subsystem engineers. We restrict our attention to requirementsbased systemlevel payoffs, i.e., the systems engineer makes a profit only if all the design requirements are met. We illustrate the model using the design of an Earthorbiting satellite system where the systems engineer determines the optimum incentive structures and requirements for two subsystems: the propulsion subsystem and the power subsystem. The model enables the analysis of a systems engineer's decisions about optimal passeddown requirements and incentives for subsystem engineers under different levels of task difficulty and associated costs. Sample results, for the case of riskneutral systems and subsystems engineers, show that it is not always in the best interest of the systems engineer to pass down the true requirements. As expected, the model predicts that for small to moderate task uncertainties the optimal requirements are higher than the true ones, effectively eliminating the probability of failure for the systems engineer. In contrast, the model predicts that for large task uncertainties the optimal requirements should be smaller than the true ones in order to lure the subsystem engineers into participation.more » « less

Summary The paper introduces a new local polynomial estimator and develops supporting asymptotic theory for nonparametric regression in the presence of covariate measurement error. We address the measurement error with Cook and Stefanski's simulation–extrapolation (SIMEX) algorithm. Our method improves on previous local polynomial estimators for this problem by using a bandwidth selection procedure that addresses SIMEX's particular estimation method and considers higher degree local polynomial estimators. We illustrate the accuracy of our asymptotic expressions with a Monte Carlo study, compare our method with other estimators with a second set of Monte Carlo simulations and apply our method to a data set from nutritional epidemiology. SIMEX was originally developed for parametric models. Although SIMEX is, in principle, applicable to nonparametric models, a serious problem arises with SIMEX in nonparametric situations. The problem is that smoothing parameter selectors that are developed for data without measurement error are no longer appropriate and can result in considerable undersmoothing. We believe that this is the first paper to address this difficulty.