skip to main content


Title: Sensitivity of Distributed Optimization Convergence Performance to Reference Bus Location
Distributed optimization is becoming popular to solve a large power system problem with the objective of reducing computational complexity. To this end, the convergence performance of distributed optimization plays an important role to solve an optimal power flow (OPF) problem. One of the critical factors that have a significant impact on the convergence performance is the reference bus location. Since selecting the reference bus location does not affect the result of centralized DC OPF, we can change the location of the reference bus to get more accurate results in distributed optimization. In this paper, our goal is to provide some insights into how to select reference bus location to have a better convergence performance. We modeled the power grid as a graph and based on some graph theory concepts, for each bus in the grid a score is assigned, and then we cluster buses to find out which buses are more suitable to be considered as the reference bus. We implement the analytical target cascading (ATC) on the IEEE 48-bus system to solve a DC OPF problem. The results show that by selecting a proper reference bus, we obtained more accurate results with an excellent convergence rate while improper selection may take much more iterations to converge.  more » « less
Award ID(s):
1711850
NSF-PAR ID:
10177046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Power & Energy Society General Meeting (PESGM)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increase of uncertain and intermittent renewable energy supply on the grid, the power system has become more vulnerable to instability. In this paper, we develop a demand response strategy to improve power system small-signal stability. We pose the problem as an optimization problem wherein the total demand-responsive load is held constant at each time instance but shifted between different buses to improve small-signal stability, which is measured by small-signal stability metrics that are functions of subsets of the system’s eigenvalues, such as the smallest damping ratio. To solve the problem, we use iterative linear programming and generalized eigenvalue sensitivities. We demonstrate the approach via a case study that uses the IEEE 14-bus system. Our results show that shifting the load between buses, can improve a small-signal stability margin. We explore the use of models of different fidelity and find that it is important to include models of the automatic voltage regulators and power system stabilizers. In addition, we show that load shifting can achieve similar improvements to generation shifting and better improvement than simply tuning power system stabilizers. 
    more » « less
  2. Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case. 
    more » « less
  3. Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing a continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop in voltage and frequency upon disconnecting from the main grid. To appropriately model the above, non-linear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently developed “l1-proximal” Surrogate Lagrangian Relaxation are extended. Testing results based on the nine-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations, thereby avoiding approximations inherent to existing methods; in particular, fast convergence of the method to feasible solutions is demonstrated. It is also demonstrated that through the optimization, the number of tap changes is drastically reduced, and the method is capable of efficiently handling networks with meshed topologies. 
    more » « less
  4. Increasing emphasis on reliability and resiliency call for advanced distribution system restoration (DSR). The integration of grid sensors, remote controls, and distributed generators (DG) brings about exciting opportunities in DSR. In this context, this work considers the task of single-step restoration of a single-phase power distribution system. Different from existing works, the devised restoration scheme achieves optimal formation of islands without heuristically pre-identifying reference buses. It further facilitates multiple DGs running within the same island, and establishes a coordination hierarchy in terms of their PV/PQ operation modes. Generators without black-start capability are guaranteed to remain connected to a black-start DG or a substation. The proposed scheme models remotely-controlled voltage regulators exactly, and integrates them in the restoration process. Numerical tests on a modified IEEE 37-bus feeder demonstrate that the proposed mixed-integer linear program (MILP) takes less than four seconds to handle random outages of 1-5 lines. The scalability of this novel MILP formulation can be attributed to the unique use of cycles and paths on the grid infrastructure graph; the McCormick linearization technique; and an approximate power flow model. 
    more » « less
  5. The Phasor measurement unit (PMU) measurements are mandatory to monitor the power system’s voltage stability margin in an online manner. Monitoring is key to the secure operation of the grid. Traditionally, online monitoring of voltage stability using synchrophasors required a centralized communication architecture, which leads to the high investment cost and cyber-security concerns. The increasing importance of cyber-security and low investment costs have recently led to the development of distributed algorithms for online monitoring of the grid that are inherently less prone to malicious attacks. In this work, we proposed a novel distributed non-iterative voltage stability index (VSI) by recasting the power flow equations as circles. The processors embedded at each bus in the smart grid with the help of PMUs and communication of voltage phasors between neighboring buses perform simultaneous online computations of VSI. The distributed nature of the index enables the real-time identification of the critical bus of the system with minimal communication infrastructure. The effectiveness of the proposed distributed index is demonstrated on IEEE test systems and contrasted with existing methods to show the benefits of the proposed method in speed, interpretability, identification of outage location, and low sensitivity to noisy measurements. 
    more » « less