skip to main content

Title: Dynamic Drivers of TIFe Diurnal Cycle in Antarctica
The discovery of the thermosphere-ionosphere Fe (TIFe) layers has opened a door to exploring the least understood thermosphere and ionosphere region between 100 and 200 km with ground-based lidar instruments. The characteristics of the polar TIFe layers, and the impacts of the atmosphere neutral dynamics, electrodynamics, and metallic chemistry on the formation of TIFe layers deserve further investigation, especially the diurnal cycles of TIFe layers observed by lidar. This paper aims at investigating the major driving forces with 1-D Thermosphere-Ionosphere Fe/Fe + (TIFe) model. A main question to answer is whether neutral dynamics like tidal winds or electrodynamics like the convection electric fields and currents in the magnetosphere and ionosphere are responsible for the diurnal cycle of TIFe layers.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1753214
Publication Date:
NSF-PAR ID:
10179787
Journal Name:
EPJ Web of Conferences
Volume:
237
Page Range or eLocation-ID:
04002
ISSN:
2100-014X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Lidar observations of the mesospheric Na layer have revealed considerablediurnal variations, particularly on the bottom side of the layer, where morethan an order-of-magnitude increase in Na density has been observed below 80 kmafter sunrise. In this paper, multi-year Na lidar observations areutilized over a full diurnal cycle at Utah State University (USU) (41.8 N,111.8 W) and a global atmospheric model of Na with 0.5 kmvertical resolution in the mesosphere and lower thermosphere (WACCM-Na) to explorethe dramatic changes of Na density on the bottom side of the layer. Photolysis of the principal reservoir NaHCO3 is shown to beprimarily responsible for themore »increase in Na after sunrise, amplified by theincreased rate of reaction of NaHCO3 with atomic H, which is mainlyproduced from the photolysis of H2O and the reaction of OH withO3. This finding is further supported by Na lidar observation at USUduring the solar eclipse (>96 % totality) event on 21 August 2017, when a decrease and recovery of the Na density on thebottom side of the layer were observed. Lastly, the model simulation showsthat the Fe density below around 80 km increases more strongly and earlierthan observed Na changes during sunrise because of the considerably fasterphotolysis rate of its major reservoir of FeOH.

    « less
  2. The second Korean Antarctic station, Jang Bogo Station (JBS), Terra Nova Bay (74°37.4′S, 164°13.7′E), is operational since March 2014. A Fabry–Perot Interferometer (FPI) and Vertical Incidence Pulsed Ionospheric Radar (VIPIR) were installed in 2014 and 2015 respectively, for simultaneous observations of neutral atmosphere and ionosphere in the polar region. Neutral winds observed by FPI show typical diurnal and semi-diurnal variations at around 250 km and 87 km respectively. VIPIR observations for the ionosphere also show typical electron density distributions in the polar region. Unlike conventional ionospheric sounder, it can measure ionospheric tilts to provide horizontal gradients of electron density overmore »JBS in addition to general ionospheric parameters from sounding observation. In this article, we briefly report the preliminary results of the observations for the neutral atmosphere and ionosphere in the polar cap region.« less
  3. Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This studymore »presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap.« less
  4. Abstract. The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI ismore »located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.« less
  5. Amplitude growth rates of quasi-monochromatic gravity waves were estimated and compared from multiple instrument measurements carried out in Brazil. Gravity wave parameters, such as the wave amplitude and growth rate in distinct altitudes, were derived from sodium lidar density and nightglow all-sky images. Lidar observations were carried out in São Jose dos Campos (23 ∘ S, 46 ∘ W) from 1994 to 2004, while all-sky imagery of multiple airglow layers was conducted in Cachoeira Paulista (23 ∘ S, 45 ∘ W) from 1999–2000 and 2004–2005. We have found that most of the measured amplitude growth rates indicate dissipative behavior formore »gravity waves identified in both lidar profiles and airglow image datasets. Only a small fraction of the observed wave events (4% imager; 9% lidar) are nondissipative (freely propagating waves). Our findings also show that imager waves are strongly dissipated within the mesosphere and lower thermosphere region (MLT), decaying in amplitude in short distances (<12 km), while lidar waves tend to maintain a constant amplitude within that region. Part of the observed waves (16% imager; 36% lidar) showed unchanging amplitude with altitude (saturated waves). About 51.6% of the imager waves present strong attenuation (overdamped waves) in contrast with 9% of lidar waves. The general saturated or damped behavior is consistent with diffusive filtering processes imposing limits to amplitude growth rates of the observed gravity waves.« less