Abstract Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland–Zirnbauer symmetries and characterized by and topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional ‘mirror’ symmetry which changes the bulk topological invariant to type. A theoretical toy model describing the proximity structure of a Chern insulator and apx-wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.
more »
« less
Interference of chiral Andreev edge states
The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quan- tum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an out- going electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.
more »
« less
- Award ID(s):
- 1743907
- PAR ID:
- 10179922
- Date Published:
- Journal Name:
- Nature Physics
- ISSN:
- 1745-2473
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A quantum anomalous Hall (QAH) insulator coupled to an s-wave superconductor is predicted to harbor chiral Majorana modes. A recent experiment interprets the half-quantized two-terminal conductance plateau as evidence for these modes in a millimeter-size QAH-niobium hybrid device. However, non-Majorana mechanisms can also generate similar signatures, especially in disordered samples. Here, we studied similar hybrid devices with a well-controlled and transparent interface between the superconductor and the QAH insulator. When the devices are in the QAH state with well-aligned magnetization, the two-terminal conductance is always half-quantized. Our experiment provides a comprehensive understanding of the superconducting proximity effect observed in QAH-superconductor hybrid devices and shows that the half-quantized conductance plateau is unlikely to be induced by chiral Majorana fermions in samples with a highly transparent interface.more » « less
-
The possible realization of Majorana fermions as quasiparticle excitations in condensed-matter physics has created much excitement. Most studies have focused on Majorana bound states; however, propagating Majorana states with linear dispersion have also been predicted. Here, we report scanning tunneling spectroscopic measurements of crystalline domain walls (DWs) in FeSe 0.45 Te 0.55 . We located DWs across which the lattice structure shifts by half a unit cell. These DWs have a finite, flat density of states inside the superconducting gap, which is a hallmark of linearly dispersing modes in one dimension. This signature is absent in DWs in the related superconductor, FeSe, which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a π-phase shift DW in a proximitized topological material.more » « less
-
We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-body interactions. Bosonic chiral spin liquids and anyonic superconductors are constructed on an array of interacting wires, each supports emergent massless Majorana fermions that are non-local (fractional) and constitute the S O ( N ) Kac-Moody Wess-Zumino-Witten algebra at level 1. We focus on the dihedral D k symmetry of S O ( 2 n ) 1 , and its promotion to a gauge symmetry by manipulating the locality of fermion pairs. Gauging the symmetry (sub)group generates the C / G twist liquids, where G = Z 2 for C = U ( 1 ) l , S U ( n ) 1 , and G = Z 2 , Z k , D k for C = S O ( 2 n ) 1 . We construct exactly solvable models for all of these topological states. We prove the presence of a bulk excitation energy gap and demonstrate the appearance of edge orbifold conformal field theories corresponding to the twist liquid topological orders. We analyze the statistical properties of the anyon excitations, including the non-Abelian metaplectic anyons and a new class of quasiparticles referred to as Ising-fluxons. We show an eight-fold periodic gauging pattern in S O ( 2 n ) 1 / G by identifying the non-chiral components of the twist liquids with discrete gauge theories.more » « less
-
We investigate the homogeneous chiral edge theory of the filling ν = 4 / 3 fractional quantum Hall state, which is parameterized by a Luttinger liquid velocity matrix and an electron tunneling amplitude (ignoring irrelevant terms). We identify two solvable cases: one case where the theory gives two free chiral boson modes, and the other case where the theory yields one free charge 2 e 3 chiral fermion and two free chiral Bogoliubov (Majorana) fermions. For generic parameters, the energy spectrum from our exact diagonalization shows Poisson level spacing statistics (LSS) in each conserved charge and momentum sector, indicating the existence of hidden conserved quantities and the possibility that the generic edge theory of the ν = 4 / 3 fractional quantum Hall state is integrable. We further show that a global symmetry preserving irrelevant nonlinear kinetic term will lead to the transition of LSS from Poisson to Wigner-Dyson at high energies. This further supports the possibility that the model without irrelevant terms is integrable.more » « less
An official website of the United States government

