skip to main content


Title: Chiral and counter-propagating Majorana fermions in a p-wave superconductor
Abstract

Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland–Zirnbauer symmetries and characterized byZandZ2topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional ‘mirror’ symmetry which changes the bulk topological invariant toZZtype. A theoretical toy model describing the proximity structure of a Chern insulator and apx-wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.

 
more » « less
Award ID(s):
1707484
NSF-PAR ID:
10303260
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
21
Issue:
12
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 123014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi-2D)3He-A consists of branches of chiral edge states. The negative energy states are related to the ground-state angular momentum,Lz=(N/2), forN/2Cooper pairs. The power law suppression of the angular momentum,Lz(T)(N/2)[123(πT/Δ)2]for0TTc, in the fully gapped 2D chiral A-phase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, ground-state angular momentum and ground-state order parameter of superfluid3He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry atDc216ξ0. The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement lengthDDc2. The PDW phase breaks time-reversal symmetry, translation invariance, but is invariant under the combination of time-reversal and translation by a one-half period of the PDW. The mass current distribution of the PDW phase reflects this combined symmetry, and originates from the spectra of edge Fermions and the chiral branches bound to the domain walls. Under sufficiently strong confinement a second-order transition occurs to the non-chiral ‘polar phase’ atDc19ξ0, in which a single p-wave orbital state of Cooper pairs is aligned along the channel.

     
    more » « less
  2. Abstract

    In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed onZd. More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantityωφωl22. In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model.

     
    more » « less
  3. Abstract

    We consider a process of noncollidingq-exchangeable random walks onZmaking steps 0 (‘straight’) and −1 (‘down’). A single random walk is calledq-exchangeable if under an elementary transposition of the neighboring steps(down,straight)(straight,down)the probability of the trajectory is multiplied by a parameterq(0,1). Our process ofmnoncollidingq-exchangeable random walks is obtained from the independentq-exchangeable walks via the Doob’sh-transform for a nonnegative eigenfunctionh(expressed via theq-Vandermonde product) with the eigenvalue less than 1. The system ofmwalks evolves in the presence of an absorbing wall at 0. The repulsion mechanism is theq-analogue of the Coulomb repulsion of random matrix eigenvalues undergoing Dyson Brownian motion. However, in our model, the particles are confined to the positive half-line and do not spread as Brownian motions or simple random walks. We show that the trajectory of the noncollidingq-exchangeable walks started from an arbitrary initial configuration forms a determinantal point process, and express its kernel in a double contour integral form. This kernel is obtained as a limit from the correlation kernel ofq-distributed random lozenge tilings of sawtooth polygons. In the limit asm,q=eγ/mwithγ > 0 fixed, and under a suitable scaling of the initial data, we obtain a limit shape of our noncolliding walks and also show that their local statistics are governed by the incomplete beta kernel. The latter is a distinguished translation invariant ergodic extension of the two-dimensional discrete sine kernel.

     
    more » « less
  4. Abstract

    We study the rate of convergence in periodic homogenization for convex Hamilton–Jacobi equations with multiscales, where the HamiltonianH=H(x,y,p):Rn×Tn×RnRdepends on both of the spatial variable and the oscillatory variable. In particular, we show that for the Cauchy problem, the rate of convergence isO(tϵ)by optimal control formulas, scale separations and curve cutting techniques. We also show the rateO(ϵλ)of homogenization for the static problem based on the same idea. Additionally, we provide examples that illustrate the rate of convergence for the Cauchy problem is optimal for0<t<ϵandtϵ.

     
    more » « less
  5. Abstract

    Is the Universe finite or infinite, and what shape does it have? These fundamental questions, of which relatively little is known, are typically studied within the context of the standard model of cosmology where the Universe is assumed to be homogeneous and isotropic. Here we address the above questions in highly general cosmological models, with the only assumption being that the average flow of matter is irrotational. Using techniques from differential geometry, specifically extensions of the Bonnet–Myers theorem, we derive a condition which implies a finite Universe and yields a bound for its diameter. Furthermore, under a weaker condition involving the interplay between curvature and diameter, together with the assumption that the Universe is finite (i.e. has closed spatial slices), we provide a concise list of possible topologies. Namely, the spatial sections then would be either the ring topologiesS1×S2,S1×~S2,S1×RP2,RP3#RP3, or covered by the sphereS3or torusT3. In particular, under this condition the basic construction of connected sums would be ruled out (save for one), along with the plethora of topologies associated with negative curvature. These results are obtained from consequences of the geometrization of three-manifolds, by applying a generalization of the almost splitting theorem together with a curvature formula of Ehlers and Ellis.

     
    more » « less