The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22–24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.
more »
« less
Building Next-Generation AI systems: Co-Optimization of Algorithms, Architectures, and Nanoscale Memristive Devices
Computing systems inspired by the architecture of the human brain is poised to revolutionize the engines for information processing and data analytics. However, the efficiency and performance of these platforms pale in comparison with the human brain, especially when benchmarked in terms of metrics such as intelligence per Watt per square mm. In this paper, we review some recent progress and future prospects of building artificial intelligence systems that target the efficiency of the brain, leveraging the unique properties of nanoscale memristive device technologies.
more »
« less
- Award ID(s):
- 1710009
- PAR ID:
- 10180298
- Date Published:
- Journal Name:
- 2019 IEEE 11th International Memory Workshop (IMW)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo , the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.more » « less
-
Abstract Artificial intelligence has not achieved defining features of biological intelligence despite models boasting more parameters than neurons in the human brain. In this perspective article, we synthesize historical approaches to understanding intelligent systems and argue that methodological and epistemic biases in these fields can be resolved by shifting away from cognitivist brain-as-computer theories and recognizing that brains exist within large, interdependent living systems. Integrating the dynamical systems view of cognition with the massive distributed feedback of perceptual control theory highlights a theoretical gap in our understanding of nonreductive neural mechanisms. Cell assemblies—properly conceived as reentrant dynamical flows and not merely as identified groups of neurons—may fill that gap by providing a minimal supraneuronal level of organization that establishes a neurodynamical base layer for computation. By considering information streams from physical embodiment and situational embedding, we discuss this computational base layer in terms of conserved oscillatory and structural properties of cortical-hippocampal networks. Our synthesis of embodied cognition, based in dynamical systems and perceptual control, aims to bypass the neurosymbolic stalemates that have arisen in artificial intelligence, cognitive science, and computational neuroscience.more » « less
-
null (Ed.)Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.more » « less
-
Assembly in future smart factories needs to address three challenges, including human centricity, sustainability, and resilience. Conventional approaches for automation in assembly have reached a bottleneck in terms of operation automomy, leaving various tasks to continued manual labour by human operators. To ease the burden on humans both physically and intellectually, human-centric assembly enhanced by augmented robots, cognitive systems, mixed reality and collaborative intelligence, assisted by thought-driven brain robotic controls, provides a promising solution. Within the context, this keynote provides an in-depth analysis of the state of human-centric assembly and identifies potentially fruitful research directions in future smart factoriesmore » « less
An official website of the United States government

