- Award ID(s):
- 1727571
- PAR ID:
- 10182963
- Date Published:
- Journal Name:
- Friction
- Volume:
- 8
- ISSN:
- 2223-7690
- Page Range / eLocation ID:
- pages802–811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This Letter reports that the atomic corrugation of the surface can affect nanoscale interfacial adhesion and friction differently. Both atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that the adhesion force needed to separate a silica tip from a graphene step edge increases as the side wall of the tip approaches the step edge when the tip is on the lower terrace and decreases as the tip ascends or descends the step edge. However, the friction force measured with the same AFM tip moving across the step edge does not positively correlate with the measured adhesion, which implies that the conventional contact mechanics approach of correlating interfacial adhesion and friction could be invalid for surfaces with atomic-scale features. The chemical and physical origins for the observed discrepancy between adhesion and friction at the atomic step edge are discussed.more » « less
-
Abstract Atomic force microscopy (AFM) is typically used for analysis of relatively flat surfaces with topographic features smaller than the height of the AFM tip. On flat surfaces, it is relatively easy to find the object of interest and deconvolute imaging artifacts resulting from the finite size of the AFM tip. In contrast, AFM imaging of three-dimensional objects much larger than the AFM tip height is rarely attempted although it could provide topographic information that is not readily available from two-dimensional imaging, such as scanning electron microscopy. In this paper, we report AFM measurements of a vertically-mounted razor blade, which is taller and sharper than the AFM tip. In this case, the AFM height data, except for the data collected around the cutting edge of the blade, reflect the shape of the AFM tip. The height data around the apex area are effectively the convolution of the AFM tip and the blade cutting edge. Based on computer simulations mimicking an AFM tip scanning across a round sample, a simple algorithm is proposed to deconvolute the AFM height data of an object taller and sharper than the AFM tip and estimate its effective curvature.more » « less
-
Abstract The properties of artificially grown thin films are strongly affected by surface processes during growth. Coherent X-rays provide an approach to better understand such processes and fluctuations far from equilibrium. Here we report results for vacuum deposition of C60on a graphene-coated surface investigated with X-ray Photon Correlation Spectroscopy in surface-sensitive conditions. Step-flow is observed through measurement of the step-edge velocity in the late stages of growth after crystalline mounds have formed. We show that the step-edge velocity is coupled to the terrace length, and that there is a variation in the velocity from larger step spacing at the center of crystalline mounds to closely-spaced, more slowly propagating steps at their edges. The results extend theories of surface growth, since the behavior is consistent with surface evolution driven by processes that include surface diffusion, the motion of step-edges, and attachment at step edges with significant step-edge barriers.
-
Friction occurs through a complex set of processes that act together to resist relative motion. However, despite this complexity, friction is typically described using a simple phenomenological expression that relates normal and lateral forces via a coefficient, the friction coefficient. This one parameter encompasses multiple, sometimes competing, effects. To better understand the origins of friction, here, we study a chemically and topographically well-defined interface between silica and graphite with a single-layer graphene step edge. We identify the separate contributions of physical and chemical processes to friction and show that a single friction coefficient can be separated into two terms corresponding to these effects. The findings provide insight into the chemical and topographic origins of friction and suggest means of tuning surfaces by leveraging competing frictional processes.more » « less
-
Abstract Scanning probe lithography is used to directly pattern monolayer transition metal dichalcogenides (TMDs) without the use of a sacrificial resist. Using an atomic‐force microscope, a negatively biased tip is brought close to the TMD surface. By inducing a water bridge between the tip and the TMD surface, controllable oxidation is achieved at the sub‐100 nm resolution. The oxidized flake is then submerged into water for selective oxide removal which leads to controllable patterning. In addition, by changing the oxidation time, thickness tunable patterning of multilayer TMDs is demonstrated. This resist‐less process results in exposed edges, overcoming a barrier in traditional resist‐based lithography and dry etch where polymeric byproduct layers are often formed at the edges. By patterning monolayers into geometric patterns of different dimensions and measuring the effective carrier lifetime, the non‐radiative recombination velocity due to edge defects is extracted. Using this patterning technique, it is shown that selenide TMDs exhibit lower edge recombination velocity as compared to sulfide TMDs. The utility of scanning probe lithography towards understanding material‐dependent edge recombination losses without significantly normalizing edge behaviors due to heavy defect generation, while allowing for eventual exploration of edge passivation schemes is highlighted, which is of profound interest for nanoscale electronics and optoelectronics.