skip to main content


Title: PERSIANN Dynamic Infrared–Rain Rate Model (PDIR) for High-Resolution, Real-Time Satellite Precipitation Estimation
Abstract Precipitation measurements with high spatiotemporal resolution are a vital input for hydrometeorological and water resources studies; decision-making in disaster management; and weather, climate, and hydrological forecasting. Moreover, real-time precipitation estimation with high precision is pivotal for the monitoring and managing of catastrophic hydroclimate disasters such as flash floods, which frequently transpire after extreme rainfall. While algorithms that exclusively use satellite infrared data as input are attractive owing to their rich spatiotemporal resolution and near-instantaneous availability, their sole reliance on cloud-top brightness temperature (Tb) readings causes underestimates in wet regions and overestimates in dry regions—this is especially evident over the western contiguous United States (CONUS). We introduce an algorithm, the Precipitation Estimations from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain rate model (PDIR), which utilizes climatological data to construct a dynamic (i.e., laterally shifting) Tb–rain rate relationship that has several notable advantages over other quantitative precipitation-estimation algorithms and noteworthy skill over the western CONUS. Validation of PDIR over the western CONUS shows a promising degree of skill, notably at the annual scale, where it performs well in comparison to other satellite-based products. Analysis of two extreme landfalling atmospheric rivers show that solely IR-based PDIR performs reasonably well compared to other IR- and PMW-based satellite rainfall products, marking its potential to be effective in real-time monitoring of extreme storms. This research suggests that IR-based algorithms that contain the spatiotemporal richness and near-instantaneous availability needed for rapid natural hazards response may soon contain the skill needed for hydrologic and water resource applications.  more » « less
Award ID(s):
1735040
NSF-PAR ID:
10183717
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
101
Issue:
3
ISSN:
0003-0007
Page Range / eLocation ID:
E286 to E302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-mean-square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.

     
    more » « less
  2. Abstract

    The estimation of the frequency of intense rainfall events is a crucial step for quantifying their impact on human societies and on the environment. This process is hindered by large gaps in ground observational networks at the global scale, such that extensive areas remain ungauged. The increasing availability of satellite‐based rainfall estimates, while providing data with unprecedented resolution and global coverage, also introduces new challenges: the scale disparity between gridded and rain‐gauge precipitation products on the one hand, and the short length of the available satellite records on the other. Here we propose a statistical framework for the estimation of rainfall extremes that is specifically designed to simultaneously address these two key issues, providing a new way of estimating extreme rainfall magnitudes from space. A downscaling procedure is here introduced to recover the spatial correlation and the probability density function of daily rainfall at the point (gauge) scale from coarse‐scale satellite estimates. The results are then combined with a recent statistical model of extremes (the Metastatistical Extreme Value distribution), which optimizes the use of the information obtained from relatively short satellite observational time series. The methodology is tested using data from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis over the Little Washita River, Oklahoma. We find that our approach satisfactorily reproduces downscaled daily rainfall probability density functions and can significantly improve the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis‐based estimation of quantiles with return times larger than the length of the available data set (19 years here), which are especially important for several water‐related applications.

     
    more » « less
  3. Long‐term trends in equatorial African rainfall have proven difficult to determine because of a dearth in ground‐measured rainfall data. Multiple, satellite‐based products now provide daily rainfall estimates from 1983 to the present at relatively fine spatial resolutions, but in order to assess trends in rainfall, they must be validated alongside ground‐based measurements. The purpose of this paper is twofold: (a) to assess the accuracy of four rainfall products covering the past several decades in western Uganda; and (b) to ascertain recent, multi‐decadal trends in annual rainfall for the region. The four products are African Rainfall Climatology Version 2 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN‐CDR), and TAMSAT African Rainfall Climatology And Timeseries (TARCAT). The bias and accuracy of 10‐day, monthly, and seasonal rainfall totals of the four products were assessed using approximately 10 years of data from 10 rain gauges. The homogeneity of the products over multiple time periods was assessed using change‐point analysis. The accuracy of the four products increased with an increase in temporal scale, and CHIRPS was the only product that could be considered sufficiently accurate at estimating seasonal rainfall totals throughout most of the region. TARCAT tended to underestimate totals, and ARC2 and PERSIANN were in general the least accurate products. Only annual rainfall estimates from CHIRPS and TARCAT were significantly correlated with ground‐measured rainfall totals. TARCAT was the most homogeneous product, while ARC2, CHIRPS, and PERSIANN had significant negative change points that caused a drying bias over the 1983–2016 period. After adjusting the satellite‐based rainfall estimates based on the timing and magnitude of the change points, annual rainfall totals derived from all four products indicated that western Uganda experienced significantly increasing rainfall from 1983 to 2016.

     
    more » « less
  4. null (Ed.)
    Abstract The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations. 
    more » « less
  5. Abstract By modulating the moisture flux from ocean to adjacent land, the North Atlantic Subtropical High (NASH) western ridge significantly influences summer-season total precipitation over the Conterminous United States (CONUS). However, its influence on the frequency and intensity of daily rainfall events over the CONUS remains unclear. Here we introduce a Bayesian statistical model to investigate the impacts of the NASH western ridge position on key statistics of daily-scale summer precipitation, including the intensity of rainfall events, the probability of precipitation occurrence, and the probability of extreme values. These statistical quantities play a key role in characterizing both the impact of wet extremes (e.g., the probability of floods) and dry extremes. By applying this model to historical rain gauge records (1948-2019) covering the entire CONUS, we find that the western ridge of the NASH influences the frequency of rainfall as well as the distribution of rainfall intensities over extended areas of the CONUS. In particular, we find that the NASH ridge also modulates the frequency of extreme rainfall, especially that over part of the Southeast and upper Midwest. Our analysis underlines the importance of including the NASH western ridge position as a predictor for key statistical rainfall properties to be used for hydrological applications. This result is especially relevant for projecting future changes in daily rainfall regimes over the CONUS based on the predicted strengthening of the NASH in a warming climate. 
    more » « less