Abstract By modulating the moisture flux from ocean to adjacent land, the North Atlantic Subtropical High (NASH) western ridge significantly influences summer-season total precipitation over the Conterminous United States (CONUS). However, its influence on the frequency and intensity of daily rainfall events over the CONUS remains unclear. Here we introduce a Bayesian statistical model to investigate the impacts of the NASH western ridge position on key statistics of daily-scale summer precipitation, including the intensity of rainfall events, the probability of precipitation occurrence, and the probability of extreme values. These statistical quantities play a key role in characterizing both the impact of wet extremes (e.g., the probability of floods) and dry extremes. By applying this model to historical rain gauge records (1948-2019) covering the entire CONUS, we find that the western ridge of the NASH influences the frequency of rainfall as well as the distribution of rainfall intensities over extended areas of the CONUS. In particular, we find that the NASH ridge also modulates the frequency of extreme rainfall, especially that over part of the Southeast and upper Midwest. Our analysis underlines the importance of including the NASH western ridge position as a predictor for key statistical rainfall properties to be used for hydrological applications. This result is especially relevant for projecting future changes in daily rainfall regimes over the CONUS based on the predicted strengthening of the NASH in a warming climate.
more »
« less
PERSIANN Dynamic Infrared–Rain Rate Model (PDIR) for High-Resolution, Real-Time Satellite Precipitation Estimation
Abstract Precipitation measurements with high spatiotemporal resolution are a vital input for hydrometeorological and water resources studies; decision-making in disaster management; and weather, climate, and hydrological forecasting. Moreover, real-time precipitation estimation with high precision is pivotal for the monitoring and managing of catastrophic hydroclimate disasters such as flash floods, which frequently transpire after extreme rainfall. While algorithms that exclusively use satellite infrared data as input are attractive owing to their rich spatiotemporal resolution and near-instantaneous availability, their sole reliance on cloud-top brightness temperature (Tb) readings causes underestimates in wet regions and overestimates in dry regions—this is especially evident over the western contiguous United States (CONUS). We introduce an algorithm, the Precipitation Estimations from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain rate model (PDIR), which utilizes climatological data to construct a dynamic (i.e., laterally shifting) Tb–rain rate relationship that has several notable advantages over other quantitative precipitation-estimation algorithms and noteworthy skill over the western CONUS. Validation of PDIR over the western CONUS shows a promising degree of skill, notably at the annual scale, where it performs well in comparison to other satellite-based products. Analysis of two extreme landfalling atmospheric rivers show that solely IR-based PDIR performs reasonably well compared to other IR- and PMW-based satellite rainfall products, marking its potential to be effective in real-time monitoring of extreme storms. This research suggests that IR-based algorithms that contain the spatiotemporal richness and near-instantaneous availability needed for rapid natural hazards response may soon contain the skill needed for hydrologic and water resource applications.
more »
« less
- Award ID(s):
- 1735040
- PAR ID:
- 10183717
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 101
- Issue:
- 3
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E286 to E302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Long‐term trends in equatorial African rainfall have proven difficult to determine because of a dearth in ground‐measured rainfall data. Multiple, satellite‐based products now provide daily rainfall estimates from 1983 to the present at relatively fine spatial resolutions, but in order to assess trends in rainfall, they must be validated alongside ground‐based measurements. The purpose of this paper is twofold: (a) to assess the accuracy of four rainfall products covering the past several decades in western Uganda; and (b) to ascertain recent, multi‐decadal trends in annual rainfall for the region. The four products are African Rainfall Climatology Version 2 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN‐CDR), and TAMSAT African Rainfall Climatology And Timeseries (TARCAT). The bias and accuracy of 10‐day, monthly, and seasonal rainfall totals of the four products were assessed using approximately 10 years of data from 10 rain gauges. The homogeneity of the products over multiple time periods was assessed using change‐point analysis. The accuracy of the four products increased with an increase in temporal scale, and CHIRPS was the only product that could be considered sufficiently accurate at estimating seasonal rainfall totals throughout most of the region. TARCAT tended to underestimate totals, and ARC2 and PERSIANN were in general the least accurate products. Only annual rainfall estimates from CHIRPS and TARCAT were significantly correlated with ground‐measured rainfall totals. TARCAT was the most homogeneous product, while ARC2, CHIRPS, and PERSIANN had significant negative change points that caused a drying bias over the 1983–2016 period. After adjusting the satellite‐based rainfall estimates based on the timing and magnitude of the change points, annual rainfall totals derived from all four products indicated that western Uganda experienced significantly increasing rainfall from 1983 to 2016.more » « less
-
null (Ed.)Abstract The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.more » « less
-
Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change.more » « less
-
Abstract The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future. Significance Statement During the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well.more » « less
An official website of the United States government

