One fundamental question in database theory is the following: Given a Boolean conjunctive queryQ, what is the best complexity for computing the answer to Q in terms of the input database sizeN? When restricted to the class of combinatorial algorithms, it is known that the best known complexity for any queryQis captured by thesubmodular widthofQ. However, beyond combinatorial algorithms, certain queries are known to admit faster algorithms that often involve a clever combination of fast matrix multiplication and data partitioning. Nevertheless, there is no systematic way to derive and analyze the complexity of such algorithms for arbitrary queriesQ. In this work, we introduce a general framework that captures the best complexity for answering any Boolean conjunctive queryQusing matrix multiplication. Our framework unifies both combinatorial and non-combinatorial techniques under the umbrella of information theory. It generalizes the notion of submodular width to a new stronger notion called the ω-submodular widththat naturally incorporates the power of fast matrix multiplication. We describe a matching algorithm that computes the answer to any queryQin time corresponding to the ω-submodularwidth ofQ. We show that our framework recovers the best known complexities for Boolean queries that have been studied in the literature, to the best of our knowledge, and also discovers new algorithms for some classes of queries that improve upon the best known complexities.
more »
« less
From Shapley Value to Model Counting and Back
In this paper we investigate the problem of quantifying the contribution of each variable to the satisfying assignments of a Boolean function based on the Shapley value. Our main result is a polynomial-time equivalence between computing Shapley values and model counting for any class of Boolean functions that are closed under substitutions of variables with disjunctions of fresh variables. This result settles an open problem raised in prior work, which sought to connect the Shapley value computation to probabilistic query evaluation. We show two applications of our result. First, the Shapley values can be computed in polynomial time over deterministic and decomposable circuits, since they are closed under OR-substitutions. Second, there is a polynomial-time equivalence between computing the Shapley value for the tuples contributing to the answer of a Boolean conjunctive query and counting the models in the lineage of the query. This equivalence allows us to immediately recover the dichotomy for Shapley value computation in case of self-join-free Boolean conjunctive queries; in particular, the hardness for non-hierarchical queries can now be shown using a simple reduction from the \#P-hard problem of model counting for lineage in positive bipartite disjunctive normal form.
more »
« less
- PAR ID:
- 10518839
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In database-as-a-service platforms, automated ver-ification of query equivalence helps eliminate redundant computation in the form of overlapping sub-queries. Researchers have proposed two pragmatic techniques to tackle this problem. The first approach consists of reducing the queries to algebraic expressions and proving their equivalence using an algebraic theory. The limitations of this technique are threefold. It cannot prove the equivalence of queries with significant differences in the attributes of their relational operators (e.g., predicates in the filter operator). It does not support certain widely-used SQL features (e.g., NULL values). Its verification procedure is computationally intensive. The second approach transforms this problem to a constraint satisfaction problem and leverages a general-purpose solver to determine query equivalence. This technique consists of deriving the symbolic representation of the queries and proving their equivalence by determining the query containment relationship between the symbolic expressions. While the latter approach addresses all the limitations of the former technique, it only proves the equivalence of queries under set semantics (i.e., output tables must not contain duplicate tuples). However, in practice, database applications use bag semantics (i.e., output tables may contain duplicate tuples) In this paper, we introduce a novel symbolic approach for proving query equivalence under bag semantics. We transform the problem of proving query equivalence under bag semantics to that of proving the existence of a bijective, identity map between tuples returned by the queries on all valid inputs. We classify SQL queries into four categories, and propose a set of novel category-specific verification algorithms. We implement this symbolic approach in SPES and demonstrate that it proves the equivalence of a larger set of query pairs (95/232) under bag semantics compared to the SOTA tools based on algebraic (30/232) and symbolic approaches (67/232) under set and bag semantics, respectively. Furthermore, SPES is 3X faster than the symbolic tool that proves equivalence under set semantics.more » « less
-
Cormode, Graham; Shekelyan, Michael (Ed.)A query algorithm based on homomorphism counts is a procedure for determining whether a given instance satisfies a property by counting homomorphisms between the given instance and finitely many predetermined instances. In a left query algorithm, we count homomorphisms from the predetermined instances to the given instance, while in a right query algorithm we count homomorphisms from the given instance to the predetermined instances. Homomorphisms are usually counted over the semiring ℕ of non-negative integers; it is also meaningful, however, to count homomorphisms over the Boolean semiring 𝔹, in which case the homomorphism count indicates whether or not a homomorphism exists. We first characterize the properties that admit a left query algorithm over 𝔹 by showing that these are precisely the properties that are both first-order definable and closed under homomorphic equivalence. After this, we turn attention to a comparison between left query algorithms over 𝔹 and left query algorithms over ℕ. In general, there are properties that admit a left query algorithm over ℕ but not over 𝔹. The main result of this paper asserts that if a property is closed under homomorphic equivalence, then that property admits a left query algorithm over 𝔹 if and only if it admits a left query algorithm over ℕ. In other words and rather surprisingly, homomorphism counts over ℕ do not help as regards properties that are closed under homomorphic equivalence. Finally, we characterize the properties that admit both a left query algorithm over 𝔹 and a right query algorithm over 𝔹.more » « less
-
Given a self-join-free conjunctive queryQand a set of tuplesS, asynthetic witness Dis a database instance such that the result ofQonDisS. In this work, we are interested in two problems. First, the existence problem ESW decides whether any synthetic witnessDexists. Second, given that a synthetic witness exists, the minimization problem SSW computes a synthetic witness of minimal size. The SSW problem is related to thesmallest witness problemrecently studied by Hu and Sintos [22]; however, the objective and the results are inherently different. More specifically, we show that SSW is poly-time solvable for a wider range of queries. Interestingly, in some cases, SSW is related to optimization problems in other domains, such as therole miningproblem in data mining and theedge concentrationproblem in graph drawing. Solutions to ESW and SSW are of practical interest, e.g., fortest database generationfor applications accessing a database and fordata compressionby encoding a datasetSas a pair of a queryQand databaseD. We prove that ESW is in P, presenting a simple algorithm that, given anyS, decides whether a synthetic witness exists in polynomial time in the size ofS. Next, we focus on the SSW problem. We show an algorithm that computes a minimal synthetic witness in polynomial time with respect to the size ofSfor any queryQthat has thehead-dominationproperty. IfQdoes not have such a property, then SSW is generally hard. More specifically, we show that for the class ofpath queries(of any constant length), SSW cannot be solved in polynomial time unless P = NP. We then extend this hardness result to the class ofBerge-acyclicqueries that do not have the head-domination property, obtaining a full dichotomy of SSW for Berge-acyclic queries. Finally, we investigate the hardness of SSW beyond Berge-acyclic queries by showing that SSW cannot be solved in polynomial time for some cyclic queries unless P = NP.more » « less
-
Cardinality estimation and conjunctive query evaluation are two of the most fundamental problems in database query processing. Recent work proposed, studied, and implemented a robust and practical information-theoretic cardinality estimation framework. In this framework, the estimator is the cardinality upper bound of a conjunctive query subject to ''degree-constraints'', which model a rich set of input data statistics. For general degree constraints, computing this bound is computationally hard. Researchers have naturally sought efficiently computable relaxed upper bounds that are as tight as possible. The polymatroid bound is the tightest among those relaxed upper bounds. While it is an open question whether the polymatroid bound can be computed in polynomial-time in general, it is known to be computable in polynomial-time for some classes of degree constraints. Our focus is on a common class of degree constraints called simple degree constraints. Researchers had not previously determined how to compute the polymatroid bound in polynomial time for this class of constraints. Our first main result is a polynomial time algorithm to compute the polymatroid bound given simple degree constraints. Our second main result is a polynomial-time algorithm to compute a ''proof sequence'' establishing this bound. This proof sequence can then be incorporated in the PANDA-framework to give a faster algorithm to evaluate a conjunctive query. In addition, we show computational limitations to extending our results to broader classes of degree constraints. Finally, our technique leads naturally to a new relaxed upper bound called theflow bound,which is computationally tractable.more » « less
An official website of the United States government

