skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Addressing Monotone Likelihood in Duration Modelling of Political Events
This article provides an accessible introduction to the phenomenon of monotone likelihood in duration modeling of political events. Monotone likelihood arises when covariate values are monotonic when ordered according to failure time, causing parameter estimates to diverge toward infinity. Within political science duration model applications, this problem leads to misinterpretation, model misspecification and omitted variable biases, among other issues. Using a combination of mathematical exposition, Monte Carlo simulations and empirical applications, this article illustrates the advantages of Firth's penalized maximum-likelihood estimation in resolving the methodological complications underlying monotone likelihood. The results identify the conditions under which monotone likelihood is most acute and provide guidance for political scientists applying duration modeling techniques in their empirical research.  more » « less
Award ID(s):
1737865
PAR ID:
10184727
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
British Journal of Political Science
ISSN:
0007-1234
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gaussian mixtures are commonly used for modeling heavy-tailed error distributions in robust linear regression. Combining the likelihood of a multivariate robust linear regression model with a standard improper prior distribution yields an analytically intractable posterior distribution that can be sampled using a data augmentation algorithm. When the response matrix has missing entries, there are unique challenges to the application and analysis of the convergence properties of the algorithm. Conditions for geometric ergodicity are provided when the incomplete data have a “monotone” structure. In the absence of a monotone structure, an intermediate imputation step is necessary for implementing the algorithm. In this case, we provide sufficient conditions for the algorithm to be Harris ergodic. Finally, we show that, when there is a monotone structure and intermediate imputation is unnecessary, intermediate imputation slows the convergence of the underlying Monte Carlo Markov chain, while post hoc imputation does not. An R package for the data augmentation algorithm is provided. 
    more » « less
  2. null (Ed.)
    Although strategies exist to measure actors' efforts to set policy, media, and lawmaking agendas, political scientists lack a method for identifying and accurately measuring another form of agenda setting that lies under the surface anytime two people talk. Within interactions, such as debates, deliberations, and discussions, actors can set the agenda by shifting others' attention to their preferred topics. In this article, I use a topic model that locates where topic shifts occur within an interaction in order to measure the relative agenda-setting power of actors. Validation exercises show that the model accurately identifies topic shifts and infers coherent topics. Three empirical applications also validate the agenda-setting measure within different political settings: U.S. presidential debates, in-person deliberations, and online discussions. These applications show that successfully setting the agenda can shape an interaction's outcomes, demonstrating the importance of continued research on this form of agenda setting. 
    more » « less
  3. Abstract We present here classes of integer programming problems that are solvable efficiently and with combinatorial flow algorithms. The problems are characterized by constraints that have either at most two variables per inequality that appear with opposite sign coefficients, or have in addition a third variable that appears only in one constraint. Such integer programs, referred to here as monotone IP2 or IP3, are shown to be solvable in polynomial time for polynomially bounded variables. This article demonstrates the vast applicability of IP2 and IP3 as models for integer programs in multiple scenarios. Since the problems are easily recognized, the knowledge of their structure enables one to determine easily that they are efficiently solvable. The variety of applications, that previously were not known to be solved as efficiently, underlies the importance of recognizing this structure and, if appropriate, formulating problems as monotone IP2 or IP3. Additionally, if there is flexibility in the modeling of an integer programming problem, the formulation choice as monotone IP2 or IP3 leads to efficient algorithms, whereas slightly different modeling choices would lead to NP‐hard problems. 
    more » « less
  4. We develop a new Bayesian split population survival model for the analysis of survival data with misclassified event failures. Within political science survival data, right-censored survival cases are often erroneously misclassified as failure cases due to measurement error. Treating these cases as failure events within survival analyses will underestimate the duration of some events. This will bias coefficient estimates, especially in situations where such misclassification is associated with covariates of interest. Our split population survival estimator addresses this challenge by using a system of two equations to explicitly model the misclassification of failure events alongside a parametric survival process of interest. After deriving this model,we use Bayesian estimation via slice sampling to evaluate its performance with simulated data, and in several political science applications. We find that our proposed “misclassified failure” survival model allows researchers to accurately account for misclassified failure events within the contexts of civil war duration and democratic survival. 
    more » « less
  5. The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect – people fall into their thoughts and reinforce their pre-existing beliefs. The previous works for the political stance problem focus on (1) identifying political factors that could reflect the political stance of a news article and (2) capturing those factors effectively. Despite their empirical successes, they are not sufficiently justified in terms of how effective their identified factors are in the political stance prediction. Motivated by this, in this work, we conduct a user study to investigate important factors in political stance prediction, and observe that the context and tone of a news article (implicit) and external knowledge for real-world entities appearing in the article (explicit) are important in determining its political stance. Based on this observation, we propose a novel knowledge-aware approach to political stance prediction (KHAN), employing (1) hierarchical attention networks (HAN) to learn the relationships among words and sentences in three different levels and (2) knowledge encoding (KE) to incorporate external knowledge for real-world entities into the process of political stance prediction. Also, to take into account the subtle and important difference between opposite political stances, we build two independent political knowledge graphs (KG) (i.e., KG-lib and KG-con) by ourselves and learn to fuse the different political knowledge. Through extensive evaluations on three real-world datasets, we demonstrate the superiority of KHAN in terms of (1) accuracy, (2) efficiency, and (3) effectiveness. 
    more » « less