skip to main content

Title: Model hard ellipsoids: the practical matter of producing them.
Model hard colloids have a great deal of relevance to physics and in particular the study of their phase behavior which can mimic that of simple atomic liquids and solids. "Nearly hard colloidal sphere" suspensions were formulated 35 years ago by the Ottewill group (Univ. of Bristol) and Imperial Chemical Industries Ltd., which were used by Pusey and van Megen in their seminal study of the phase behavior of hard-sphere colloids. We report on our efforts to reproduce and refine this benchmark polymer colloid, including the recent synthesis of hard ellipsoids for random and ordered packing studies in microgravity*. The custom-made samples are composed of linear polymer chains of poly(methyl methacrylate), functionalized with photo-crosslinkable moieties and fluorescent molecules. The resulting ellipsoidal shapes are about 1 micron in size and stabilized with surface-grafted poly(12-hydroxystearic acid) chains. The particles are dispersed in a refractive index matching fluid and particle aspect ratios vary from 1 to 4. * Launched March 2020 aboard SpaceX CRS-20 resupply service mission to the International Space Station. *NASA NNX13AR67G (NYU); NSF GOALI 1832291 (NYU); NSF GOALI 1832260 (NJIT)  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Physical Society
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a procedure to obtain the search distance used to determine particle contact in dense suspensions of smooth and rough colloids. This method works by summing physically relevant length scales in an uncertainty analysis and does not require detailed quantification of the surface roughness. We suspend sterically stabilized, fluorescent poly(methyl methacrylate) colloids in a refractive index-matched solvent, squalene, in order to ensure hard sphere-like behavior. High speed centrifugation is used to pack smooth and rough colloids to their respective jamming points, ϕ J . The jammed suspensions are subsequently diluted with known volumes of solvent to ϕ < ϕ J . Structural parameters obtained from confocal laser scanning micrographs of the diluted colloidal suspensions are extrapolated to ϕ J to determine the mean contact number at jamming, 〈 z 〉 J . Contact below jamming refers to nearest neighbors at a length scale below which the effects of hydrodynamic or geometric friction come into play. Sensitivity analyses show that a deviation of the search distance by 1% of the particle diameter results in 〈 z 〉 changing by up to 10%, with the error in contact number distribution being magnified in dense suspensions ( ϕ > 0.50) due to an increased number of nearest neighbors in the first coordination shell. 
    more » « less
  2. Abstract

    Poly(lactic acid) (PLA) is a commercially available bio‐based polymer that is a potential alternative to many commodity petrochemical‐based polymers. However, PLA's thermomechanical properties limit its use in many applications. Incorporating polymer‐grafted cellulose nanocrystals (CNCs) is one potential route to improving these mechanical properties. One key challenge in using these polymer‐grafted nanoparticles is to understand which variables associated with polymer grafting are most important for improving composite properties. In this work, poly(ethylene glycol)‐grafted CNCs are used to study the effects of polymer grafting density and molecular weight on the properties of PLA composites. All CNC nanofillers are found to reinforce PLA above the glass transition temperature, but non‐grafted CNCs and CNCs grafted with short PEG chains (<2 kg mol−1) are found to cause significant embrittlement, generally resulting in less than 3% elongation‐at‐break. By grafting higher molecular weight PEG (10 kg mol−1) onto the CNCs at a grafting density where the polymer chains are predicted to be in the semi‐dilute polymer brush conformation (~0.1 chains nm−2), embrittlement can be avoided.

    more » « less
  3. It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature. 
    more » « less
  4. The self-assembly of block polymers into well-ordered nanostructures underpins their utility across fundamental and applied polymer science, yet only a handful of equilibrium morphologies are known with the simplest AB-type materials. Here, we report the discovery of the A15 sphere phase in single-component diblock copolymer melts comprising poly(dodecyl acrylate)− block −poly(lactide). A systematic exploration of phase space revealed that A15 forms across a substantial range of minority lactide block volume fractions ( f L = 0.25 − 0.33) situated between the σ-sphere phase and hexagonally close-packed cylinders. Self-consistent field theory rationalizes the thermodynamic stability of A15 as a consequence of extreme conformational asymmetry. The experimentally observed A15−disorder phase transition is not captured using mean-field approximations but instead arises due to composition fluctuations as evidenced by fully fluctuating field-theoretic simulations. This combination of experiments and field-theoretic simulations provides rational design rules that can be used to generate unique, polymer-based mesophases through self-assembly. 
    more » « less
  5. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less