skip to main content


Title: Defining First-generation and Low-income Students in Engineering: An Exploration
First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Our results indicate that categorizing a first-generation student as someone whose parents have less than an associate’s degree versus less than a bachelor’s degree may lead to different understandings of their experiences (RQ1). For example, the proportion of URM students is higher among those whose parents have less than an associate’s degree than among their “associate’s degree or more” peers (26% vs 11.9%). However, differences in college experiences are most pronounced among students whose parents have less than a bachelor’s degree compared with their “bachelor’s degree or more” peers: having a job to help pay for college (55.4% vs 47.3%), research with faculty (22.7% vs 35.0%), and study abroad (9.0% vs 17.3%). With respect to differences by income levels, respondents are statistically different across income groups, with fewer URM students as family income level increases. As family income level increases, there are more women in aggregate, but fewer URM women. College experiences are different for the middle income or higher group (internship 48.4% low and lower-middle income vs 59.0% middle income or higher; study abroad 11.2% vs 16.4%; job 58.6% vs 46.8%). Despite these differences in demographic characteristics and college experiences depending on parental educational attainment and family income, our dataset indicates that the definition does not change the statistical significance when comparing between first-generation students and students who were continuing-generation by any definition (RQ2). First-generation and low-income statuses are often used as proxies for one another, and in this dataset, are highly correlated. However, there are unique patterns at the intersection of these two identities. For the purpose of our RQ3 analysis, we define ‘first-generation’ as students whose parents earned less than a bachelor’s degree and ‘low-income’ as low or lower-middle income. In this sample, 68 percent of students were neither FG nor LI while 11 percent were both (FG&LI). On no measure of demographics or college experience is the FG&LI group statistically similar to the advantaged group. Low-income students had the highest participation in working to pay for college, regardless of parental education, while first-generation students had the lower internship participation than low-income students. Furthermore, being FG&LI is associated with lower ETSE compared with all other groups. These results suggest that care is required when applying the labels “first-generation” and/or “low-income” when considering these groups in developing institutional support programs, in engineering education research, and in educational policy. Moreover, by considering first-generation and low-income students with an intersectional lens, we gain deeper insight into engineering student populations that may reveal potential opportunities and barriers to educational resources and experiences that are an important part of preparation for an engineering career.  more » « less
Award ID(s):
1830761
NSF-PAR ID:
10187850
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce. 
    more » « less
  2. Abstract Objective: To examine the effect of food insecurity during college on graduation and degree attainment. Design: Secondary analysis of longitudinal panel data. We measured food insecurity concurrent with college enrollment using the 18-question USDA Household Food Security Survey Module. Educational attainment was measured in 2015-2017 via two questions about college completion and highest degree attained. Logistic and multinomial-logit models adjusted for sociodemographic characteristics were estimated. Setting: United States (US) Participants: A nationally representative, balanced panel of 1,574 college students in the US in 1999-2003 with follow-up through 2015-2017 from the Panel Study of Income Dynamics. Results: In 1999-2003, 14.5% of college students were food insecure and were more likely to be older, non-White, and first-generation students. In adjusted models, food insecurity was associated with lower odds of college graduation (OR 0.57, 95% CI: 0.37, 0.88, p=0.01) and lower likelihood of obtaining a Bachelor’s degree (RRR 0.57 95% CI: 0.35, 0.92, p=0.02) or graduate/professional degree (RRR 0.39, 95% CI: 0.17, 0.86, p=0.022). These associations were more pronounced among first-generation students. 47.2% of first-generation students who experienced food insecurity graduated from college; food insecure first-generation students were less likely to graduate compared to first-generation students who were food secure (47.2% vs. 59.3%, p=0.020) and non-first-generation students who were food insecure (47.2% vs. 65.2%, p=0.037). Conclusions: Food insecurity during college is a barrier to graduation and higher degree attainment, particularly for first-generation students. Existing policies and programs that help mitigate food insecurity should be expanded and more accessible to the college student population. 
    more » « less
  3. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. The redshirt model is comprised of seven main programmatic components aimed at improving the engagement, retention, and graduation of students underrepresented in engineering. These components include: “intrusive” academic advising and support services, an intensive first-year academic curriculum, community-building (including pre-matriculation summer programs), career awareness and vision, faculty mentorship, NSF S-STEM scholarships, and second-year support. Successful implementation of these activities is intended to produce two main long-term outcomes: a six-year graduation rate of 60%-75% for redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, and women students in engineering at participating universities. In the first year of the grant (AY 16-17), SSPs developed their own redshirt programs, hired and trained staff, and got their programs off the ground. ERIs implemented faculty mentorship programs and expanded support to redshirt students into their sophomore year. In the second year (AY 17-18), redshirt programs were expanded at the ERIs while SSPs welcomed their first cohorts of redshirt students. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, identifying distinctions between them in addition to highlighting common elements. First-year assessment results are presented for the ERIs based on student surveys, performance, and retention outcomes. Ongoing research into faculty experiences is investigating how participation as mentors for redshirt students changes faculty mindsets and instructional practices. Ongoing research into student experiences is investigating how the varied curricula, advising, and cohort models used across the six institutions influence student retention and sense of identity as engineering students. 
    more » « less
  4. It is well-known that women and minorities are underrepresented in STEM fields. This is true of mechatronics and robotics engineering (MRE), despite targeted K-12 activities, such as the FIRST Robotics Competition, that aim to increase diversity in engineering. This paper is a first step in assessing the current status of women and underrepresented minorities (URM) as well as investigating solutions to increase diversity and support inclusion of these groups specifically in MRE. The paper examines challenges and potential solutions identified in The 4th Future of Mechatronics and Robotics Education and in an online survey of the MRE college instructor community. Survey participants reported on courses, programs, clubs, and outreach events at the college level. The sample size is small, but the data provide initial findings to inform further study. Qualitative text analysis was used with the survey data. Five themes emerged, ordered from most frequent to least: the instructor’s perspective, social context of MRE, specific attributes of MRE, pre-college interventions, and in-college interventions. The most promising new ideas are in curriculum reform to incorporate social context into engineering education and in expanding STEM outreach by colleges to elementary and middle schools. Existing programs should also be strengthened, including robotics competitions, NSF Research Experiences for Undergraduates, STEM summer camps, bridge programs, and affinity programs. Other important aspects include actively engaging parents, and working to be more inclusive of first-generation Americans and first-generation college students. The paper concludes with initial suggestions to increase diversity and inclusion in MRE and areas for further study. 
    more » « less
  5. Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars,  2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars as they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers.   At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce.  
    more » « less